IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Comonotonic measures of multivariate risks

Listed author(s):
  • Ivar Ekeland

    (CEREMADE - CEntre de REcherches en MAthématiques de la DEcision - CNRS - Centre National de la Recherche Scientifique - Université Paris-Dauphine)

  • Alfred Galichon

    ()

    (ECON - Département d'économie - Sciences Po)

  • Marc Henry

    (Départment de sciences économiques - Université de Montréal)

We propose amultivariate extension of awell-known characterization by S.Kusuoka of regular and coherent risk measures as maximal correlation functionals. This involves an extension of the notion of comonotonicity to random vectors through generalized quantile functions.Moreover, we propose to replace the current law invariance, subadditivity, and comonotonicity axioms by an equivalent property we call strong coherence and that we argue has more natural economic interpretation. Finally, we reformulate the computation of regular and coherent risk measures as an optimal transportation problem, for which we provide an algorithm and implementation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://hal-sciencespo.archives-ouvertes.fr/hal-01053550/document
Download Restriction: no

Paper provided by HAL in its series Post-Print with number hal-01053550.

as
in new window

Length:
Date of creation: 2012
Publication status: Published in Mathematical Finance, Wiley, 2012, 22 (1), pp.109-132
Handle: RePEc:hal:journl:hal-01053550
Note: View the original document on HAL open archive server: https://hal-sciencespo.archives-ouvertes.fr/hal-01053550
Contact details of provider: Web page: https://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. repec:dau:papers:123456789/342 is not listed on IDEAS
  2. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
  3. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
  4. Pauline Barrieu & Nicole El Karoui, 2005. "Inf-convolution of risk measures and optimal risk transfer," Finance and Stochastics, Springer, vol. 9(2), pages 269-298, 04.
  5. Rüschendorf Ludger, 2006. "Law invariant convex risk measures for portfolio vectors," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-12, July.
  6. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
  7. Elyès Jouini & Walter Schachermayer & Nizar Touzi, 2006. "Law Invariant Risk Measures Have the Fatou Property," Post-Print halshs-00176522, HAL.
  8. Burgert, Christian & Ruschendorf, Ludger, 2006. "Consistent risk measures for portfolio vectors," Insurance: Mathematics and Economics, Elsevier, vol. 38(2), pages 289-297, April.
  9. repec:dau:papers:123456789/353 is not listed on IDEAS
  10. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01053550. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.