IDEAS home Printed from https://ideas.repec.org/p/cla/levarc/7662.html
   My bibliography  Save this paper

Subjective Probability and Expected Utility without Additivity

Author

Listed:
  • David Schmeidler

Abstract

An act maps states of nature to outcomes: deterministic outcomes, as well as random outcomes, are included. Two acts f and g are comonotonic, by definition, if it never happens that f(s) > f(t) and g(t) > g(s) for some states of nature s and t. An axiom of comonotonic independence is introduced here. It weakens the von Neumann-Morgenstern axiom of independence as follows: If f > g and if f, g and h are comonotonic then $f + (1 - $)h > $g + (1 - $)h. If a nondegenerate, continuous, and monotonic (state independent) weak order over acts satisfies comonotonic independence, then it induces a unique non-(necessarily-) additive probability and a von Neumann-Morgenstern utility. Furthermore, one can compute the expected utility of an act with respect to the nonadditive probability, using the Choquet integral. This extension of the expected utility theory covers situations, such as the Ellsberg paradox, which are inconsistent with additive expected utility. The concept of uncertainty aversion and interpretation of comonotonic independence in the context of social welfare functions are included. Copyright 1989 by The Econometric Society.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • David Schmeidler, 1989. "Subjective Probability and Expected Utility without Additivity," Levine's Working Paper Archive 7662, David K. Levine.
  • Handle: RePEc:cla:levarc:7662
    as

    Download full text from publisher

    File URL: http://www.dklevine.com/archive/refs47662.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Benveniste, L M & Scheinkman, J A, 1979. "On the Differentiability of the Value Function in Dynamic Models of Economics," Econometrica, Econometric Society, vol. 47(3), pages 727-732, May.
    2. Bewley, Truman F., 1980. "The permanent income hypothesis and long-run economic stability," Journal of Economic Theory, Elsevier, vol. 22(3), pages 377-394, June.
    3. Timothy J. Kehoe & David K. Levine & Paul Romer, 1989. "Steady States and Determinacy in Economies with Infinitely Lived Agents," Levine's Working Paper Archive 52, David K. Levine.
    4. Kehoe, Timothy J. & Levine, David K., 1990. "The economics of indeterminacy in overlapping generations models," Journal of Public Economics, Elsevier, vol. 42(2), pages 219-243, July.
    5. Kehoe, Timothy J & Levine, David K, 1985. "Comparative Statics and Perfect Foresight in Infinite Horizon Economies," Econometrica, Econometric Society, vol. 53(2), pages 433-453, March.
    6. Coles, Jeffrey Link, 1985. "Equilibrium Turnpike Theory with Constant Returns to Scale and Possible Heterogeneous Discount Factors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 26(3), pages 671-679, October.
    7. Bewley, Truman, 1982. "An integration of equilibrium theory and turnpike theory," Journal of Mathematical Economics, Elsevier, vol. 10(2-3), pages 233-267, September.
    8. Deneckere, Raymond & Pelikan, Steve, 1986. "Competitive chaos," Journal of Economic Theory, Elsevier, vol. 40(1), pages 13-25, October.
    9. Montrucchio, Luigi, 1987. "Lipschitz continuous policy functions for strongly concave optimization problems," Journal of Mathematical Economics, Elsevier, vol. 16(3), pages 259-273, June.
    10. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1982. "Characterization of optimal plans for stochastic dynamic programs," Journal of Economic Theory, Elsevier, vol. 28(2), pages 221-234, December.
    11. McKenzie, Lionel W., 2005. "Optimal economic growth, turnpike theorems and comparative dynamics," Handbook of Mathematical Economics,in: K. J. Arrow & M.D. Intriligator (ed.), Handbook of Mathematical Economics, edition 2, volume 3, chapter 26, pages 1281-1355 Elsevier.
    12. Boldrin, Michele & Montrucchio, Luigi, 1986. "On the indeterminacy of capital accumulation paths," Journal of Economic Theory, Elsevier, vol. 40(1), pages 26-39, October.
    13. Timothy J. Kehoe & David K. Levine & Andreu Mas-Colell & William Zame, 1989. "Determinacy of Equilibrium in Large Square Economies," Levine's Working Paper Archive 46, David K. Levine.
    14. Varian, Hal R, 1975. "A Third Remark on the Number of Equilibria of an Economy," Econometrica, Econometric Society, vol. 43(5-6), pages 985-986, Sept.-Nov.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cla:levarc:7662. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine). General contact details of provider: http://www.dklevine.com/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.