IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Subjective Probability and Expected Utility without Additivity

  • David Schmeidler

An act maps states of nature to outcomes: deterministic outcomes, as well as random outcomes, are included. Two acts f and g are comonotonic, by definition, if it never happens that f(s) > f(t) and g(t) > g(s) for some states of nature s and t. An axiom of comonotonic independence is introduced here. It weakens the von Neumann-Morgenstern axiom of independence as follows: If f > g and if f, g and h are comonotonic then $f + (1 - $)h > $g + (1 - $)h. If a nondegenerate, continuous, and monotonic (state independent) weak order over acts satisfies comonotonic independence, then it induces a unique non-(necessarily-) additive probability and a von Neumann-Morgenstern utility. Furthermore, one can compute the expected utility of an act with respect to the nonadditive probability, using the Choquet integral. This extension of the expected utility theory covers situations, such as the Ellsberg paradox, which are inconsistent with additive expected utility. The concept of uncertainty aversion and interpretation of comonotonic independence in the context of social welfare functions are included. Copyright 1989 by The Econometric Society.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.dklevine.com/archive/refs47662.pdf
Download Restriction: no

Paper provided by David K. Levine in its series Levine's Working Paper Archive with number 7662.

as
in new window

Length:
Date of creation: 31 Dec 1989
Date of revision:
Handle: RePEc:cla:levarc:7662
Contact details of provider: Web page: http://www.dklevine.com/

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levarc:7662. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.