IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0605049.html
   My bibliography  Save this paper

Pricing with coherent risk

Author

Listed:
  • Alexander S. Cherny

Abstract

This paper deals with applications of coherent risk measures to pricing in incomplete markets. Namely, we study the No Good Deals pricing technique based on coherent risk. Two forms of this technique are presented: one defines a good deal as a trade with negative risk; the other one defines a good deal as a trade with unusually high RAROC. For each technique, the fundamental theorem of asset pricing and the form of the fair price interval are presented. The model considered includes static as well as dynamic models, models with an infinite number of assets, models with transaction costs, and models with portfolio constraints. In particular, we prove that in a model with proportional transaction costs the fair price interval converges to the fair price interval in a frictionless model as the coefficient of transaction costs tends to zero. Moreover, we study some problems in the ``pure'' theory of risk measures: we present a simple geometric solution of the capital allocation problem and apply it to define the coherent risk contribution. The mathematical tools employed are probability theory, functional analysis, and finite-dimensional convex analysis.

Suggested Citation

  • Alexander S. Cherny, 2006. "Pricing with coherent risk," Papers math/0605049, arXiv.org.
  • Handle: RePEc:arx:papers:math/0605049
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0605049
    File Function: Latest version
    Download Restriction: no

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:kap:compec:v:53:y:2019:i:2:d:10.1007_s10614-017-9766-5 is not listed on IDEAS

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0605049. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.