IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v28y2019i3d10.1007_s11749-018-0593-3.html
   My bibliography  Save this article

Affine invariant depth-based tests for the multivariate one-sample location problem

Author

Listed:
  • Sakineh Dehghan

    (University of Shahid Beheshti)

  • Mohammad Reza Faridrohani

    (University of Shahid Beheshti)

Abstract

A multivariate affine invariant family of depth-based tests is proposed for the one-sample location problem. Suitable outlyingness functions which are formulated using depth functions are used to construct the proposed tests. The asymptotic null distribution and the asymptotic relative efficiency of the tests are discussed under the class of centrally and elliptically symmetric distributions, respectively. Furthermore, a conditional distribution-free property of the tests is shown. The performance of the proposed tests is evaluated using a Monte Carlo study as well as asymptotic relative efficiencies and is compared to that of several competitors. It is observed that such tests yield a better performance as compared to their competitors for a wide spectrum of alternatives.

Suggested Citation

  • Sakineh Dehghan & Mohammad Reza Faridrohani, 2019. "Affine invariant depth-based tests for the multivariate one-sample location problem," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 671-693, September.
  • Handle: RePEc:spr:testjl:v:28:y:2019:i:3:d:10.1007_s11749-018-0593-3
    DOI: 10.1007/s11749-018-0593-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-018-0593-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-018-0593-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Möttönen, J. & Hettmansperger, T. P. & Oja, H. & Tienari, J., 1998. "On the Efficiency of Affine Invariant Multivariate Rank Tests," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 118-132, July.
    2. Hannu Oja, 1999. "Affine Invariant Multivariate Sign and Rank Tests and Corresponding Estimates: a Review," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 319-343, September.
    3. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    4. Yijun Zuo, 2009. "Data Depth Trimming Counterpart of the Classical (or ) Procedure," Journal of Probability and Statistics, Hindawi, vol. 2009, pages 1-9, December.
    5. Rainer Dyckerhoff & Christophe Ley & Davy Paindaveine, 2015. "Depth-based runs tests for bivariate central symmetry," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 917-941, October.
    6. Rousson, Valentin, 2002. "On Distribution-Free Tests for the Multivariate Two-Sample Location-Scale Model," Journal of Multivariate Analysis, Elsevier, vol. 80(1), pages 43-57, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sakineh Dehghan & Mohammad Reza Faridrohani & Zahra Barzegar, 2023. "Testing for diagonal symmetry based on center-outward ranking," Statistical Papers, Springer, vol. 64(1), pages 255-283, February.
    2. Dehghan, Sakineh & Faridrohani, Mohammad Reza, 2024. "A data depth based nonparametric test of independence between two random vectors," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ollila, Esa & Oja, Hannu & Croux, Christophe, 2003. "The affine equivariant sign covariance matrix: asymptotic behavior and efficiencies," Journal of Multivariate Analysis, Elsevier, vol. 87(2), pages 328-355, November.
    2. Nadar, M. & Hettmansperger, T. P. & Oja, H., 2003. "The asymptotic covariance matrix of the Oja median," Statistics & Probability Letters, Elsevier, vol. 64(4), pages 431-442, October.
    3. Jin Wang & Weihua Zhou, 2015. "Effect of kurtosis on efficiency of some multivariate medians," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(3), pages 331-348, September.
    4. Wellmann, Robin & Müller, Christine H., 2010. "Tests for multiple regression based on simplicial depth," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 824-838, April.
    5. Karl Mosler, 2003. "Central Regions and Dependency," Methodology and Computing in Applied Probability, Springer, vol. 5(1), pages 5-21, March.
    6. Esa Ollila & Hannu Oja & Thomas P. Hettmansperger, 2002. "Estimates of regression coefficients based on the sign covariance matrix," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 447-466, August.
    7. G. Zioutas & C. Chatzinakos & T. D. Nguyen & L. Pitsoulis, 2017. "Optimization techniques for multivariate least trimmed absolute deviation estimation," Journal of Combinatorial Optimization, Springer, vol. 34(3), pages 781-797, October.
    8. Gangwei Cai & Baoping Zou & Xiaoting Chi & Xincheng He & Yuang Guo & Wen Jiang & Qian Wu & Yujin Zhang & Yanna Zhou, 2023. "Neighborhood Spatio-Temporal Impacts of SDG 8.9: The Case of Urban and Rural Exhibition-Driven Tourism by Multiple Methods," Land, MDPI, vol. 12(2), pages 1-37, January.
    9. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    10. Zhou, Xinyu & Ma, Yijia & Wu, Wei, 2023. "Statistical depth for point process via the isometric log-ratio transformation," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Hwang, Jinsoo & Jorn, Hongsuk & Kim, Jeankyung, 2004. "On the performance of bivariate robust location estimators under contamination," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 587-601, January.
    12. J. T. A. S. Ferreira & M. F. J. Steel, 2004. "On Describing Multivariate Skewness: A Directional Approach," Econometrics 0409010, University Library of Munich, Germany.
    13. Masato Okamoto, 2009. "Decomposition of gini and multivariate gini indices," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 7(2), pages 153-177, June.
    14. Victor Chernozhukov & Alfred Galichon & Marc Hallin & Marc Henry, 2014. "Monge-Kantorovich Depth, Quantiles, Ranks, and Signs," Papers 1412.8434, arXiv.org, revised Sep 2015.
    15. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    16. Caiya Zhang & Zhengyan Lin & Jianjun Wu, 2009. "Nonparametric tests for the general multivariate multi-sample problem," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 21(7), pages 877-888.
    17. Averous, Jean & Meste, Michel, 1997. "Median Balls: An Extension of the Interquantile Intervals to Multivariate Distributions," Journal of Multivariate Analysis, Elsevier, vol. 63(2), pages 222-241, November.
    18. Möttönen, J. & Hettmansperger, T. P. & Oja, H. & Tienari, J., 1998. "On the Efficiency of Affine Invariant Multivariate Rank Tests," Journal of Multivariate Analysis, Elsevier, vol. 66(1), pages 118-132, July.
    19. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
    20. Eisenberg, Bennett, 2015. "The multivariate Gini ratio," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 292-298.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:28:y:2019:i:3:d:10.1007_s11749-018-0593-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.