IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/0409010.html
   My bibliography  Save this paper

On Describing Multivariate Skewness: A Directional Approach

Author

Listed:
  • J. T. A. S. Ferreira

    (University of Warwick)

  • M. F. J. Steel

    (University of Warwick)

Abstract

Most multivariate measures of skewness in the literature measure the overall skewness of a distribution. While these measures are perfectly adequate for testing the hypothesis of distributional symmetry, their relevance for describing skewed distributions is less obvious. In this article, we consider the problem of characterising the skewness of multivariate distributions. We define directional skewness as the skewness along a direction and analyse parametric classes of skewed distributions using measures based on directional skewness. The analysis brings further insight into the classes, allowing for a more informed selection of particular classes for particular applications. In the context of Bayesian linear regression under skewed error we use the concept of directional skewness twice. First in the elicitation of a prior on the parameters of the error distribution, and then in the analysis of the skewness of the posterior distribution of the regression residuals.

Suggested Citation

  • J. T. A. S. Ferreira & M. F. J. Steel, 2004. "On Describing Multivariate Skewness: A Directional Approach," Econometrics 0409010, EconWPA.
  • Handle: RePEc:wpa:wuwpem:0409010
    Note: Type of Document - pdf; pages: 21
    as

    Download full text from publisher

    File URL: http://econwpa.repec.org/eps/em/papers/0409/0409010.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
    2. Oja, Hannu, 1983. "Descriptive statistics for multivariate distributions," Statistics & Probability Letters, Elsevier, vol. 1(6), pages 327-332, October.
    3. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    4. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    5. Jose T.A.S. Ferreira & Mark F.J. Steel, 2004. "Bayesian Multivariate Regression Analysis with a New Class of Skewed Distributions," Econometrics 0403001, EconWPA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José T. A. S. Ferreira & Mark F. J. Steel, 2005. "Modelling directional dispersion through hyperspherical log-splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 599-616.
    2. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.

    More about this item

    Keywords

    Bayesian methods; Multivariate distribution; Multivariate regression; Prior elicitation; Skewness.;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0409010. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA). General contact details of provider: http://econwpa.repec.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.