IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A Constructive Representation of Univariate Skewed Distributions

  • Jose T.A.S. Ferreira
  • Mark F.J. Steel

We introduce a general perspective on the introduction of skewness into symmetric distributions. Making use of inverse probability integral transformations we provide a constructive representation of skewed distributions, where the skewing mechanism and the original symmetric distributions are specified separately. We study the effects of the skewing mechanism on \emph{e.g.} modality, tail behaviour and the amount of skewness generated. In light of the constructive representation, we review a number of characteristics of three classes of skew distributions previously defined in the literature. The representation is also used to introduce two novel classes of skewed distributions. Finally, we incorporate the different classes of distributions into a Bayesian linear regression framework and analyse their differences and similarities.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by EconWPA in its series Econometrics with number 0403002.

in new window

Length: 25 pages
Date of creation: 08 Mar 2004
Date of revision:
Handle: RePEc:wpa:wuwpem:0403002
Note: Type of Document - pdf; prepared on WinXP; pages: 25
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Nadarajah, Saralees & Kotz, Samuel, 2003. "Skewed distributions generated by the normal kernel," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 269-277, November.
  2. Sonia Petrone & Larry Wasserman, 2002. "Consistency of Bernstein polynomial posteriors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(1), pages 79-100.
  3. M. Jones, 2004. "Families of distributions arising from distributions of order statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 13(1), pages 1-43, June.
  4. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2007. "Model comparison of coordinate-free multivariate skewed distributions with an application to stochastic frontiers," Journal of Econometrics, Elsevier, vol. 137(2), pages 641-673, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0403002. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.