IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v96y2016icp133-144.html

Bayesian analysis of two-piece location–scale models under reference priors with partial information

Author

Listed:
  • Tu, Shiyi
  • Wang, Min
  • Sun, Xiaoqian

Abstract

Bayesian estimators are developed and compared with the maximum likelihood estimators for the two-piece location–scale models, which contain several well-known distributions such as the asymmetric Laplace distribution, the two-piece normal distribution, and the two-piece Student-t distribution. For the validity of Bayesian analysis, it is essential to use priors that could lead to proper posterior distributions. Specifically, reference priors with partial information have been considered. A sufficient and necessary condition is established to guarantee the propriety of the posterior distribution under a general class of priors. The performance of the proposed approach is illustrated through extensive simulation studies and real data analysis.

Suggested Citation

  • Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
  • Handle: RePEc:eee:csdana:v:96:y:2016:i:c:p:133-144
    DOI: 10.1016/j.csda.2015.11.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315002704
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.11.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Richard L. Smith & J. C. Naylor, 1987. "A Comparison of Maximum Likelihood and Bayesian Estimators for the Three‐Parameter Weibull Distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 36(3), pages 358-369, November.
    3. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    4. Nadarajah, Saralees & Kotz, Samuel, 2003. "Skewed distributions generated by the normal kernel," Statistics & Probability Letters, Elsevier, vol. 65(3), pages 269-277, November.
    5. Berger J.O. & De Oliveira V. & Sanso B., 2001. "Objective Bayesian Analysis of Spatially Correlated Data," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1361-1374, December.
    6. Purdom Elizabeth & Holmes Susan P, 2005. "Error Distribution for Gene Expression Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-35, July.
    7. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    8. A. Azzalini & A. Capitanio, 1999. "Statistical applications of the multivariate skew normal distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 579-602.
    9. Yu, Keming & Moyeed, Rana A., 2001. "Bayesian quantile regression," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 437-447, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabrizio Leisen & Luca Rossini & Cristiano Villa, 2020. "Loss-based approach to two-piece location-scale distributions with applications to dependent data," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 309-333, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:osf:osfxxx:enzgs_v1 is not listed on IDEAS
    2. Hanze Zhang & Yangxin Huang, 2020. "Quantile regression-based Bayesian joint modeling analysis of longitudinal–survival data, with application to an AIDS cohort study," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 339-368, April.
    3. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    4. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    5. Das, Priyam & Ghosal, Subhashis, 2018. "Bayesian non-parametric simultaneous quantile regression for complete and grid data," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 172-186.
    6. Dejan Živkov & Slavica Manić & Jelena Kovačević & Željana Trbović, 2022. "Assessing volatility transmission between Brent and stocks in the major global oil producers and consumers – the multiscale robust quantile regression," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(1), pages 67-93, January.
    7. Hemant Kulkarni & Jayabrata Biswas & Kiranmoy Das, 2019. "A joint quantile regression model for multiple longitudinal outcomes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(4), pages 453-473, December.
    8. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    9. Wang, Shangshan & Xiang, Liming, 2017. "Two-layer EM algorithm for ALD mixture regression models: A new solution to composite quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 136-154.
    10. Dengdeng Yu & Matthew Pietrosanu & Ivan Mizera & Bei Jiang & Linglong Kong & Wei Tu, 2025. "Functional Linear Partial Quantile Regression with Guaranteed Convergence for Neuroimaging Data Analysis," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 17(1), pages 174-190, April.
    11. Tsionas, Mike G., 2020. "Quantile Stochastic Frontiers," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1177-1184.
    12. Fadel Hamid Hadi Alhusseini & Taha al Shaybawee & Fedaa Abd Almajid Sabbar Alaraje, 2017. "Identify Relative importance of covariates in Bayesian lasso quantile regression via new algorithm in statistical program R," Romanian Statistical Review, Romanian Statistical Review, vol. 65(4), pages 99-110, December.
    13. Wu Wang & Zhongyi Zhu, 2017. "Conditional empirical likelihood for quantile regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(1), pages 1-16, January.
    14. Marco Bottone & Lea Petrella & Mauro Bernardi, 2021. "Unified Bayesian conditional autoregressive risk measures using the skew exponential power distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 1079-1107, September.
    15. Yuzhu Tian & Er’qian Li & Maozai Tian, 2016. "Bayesian joint quantile regression for mixed effects models with censoring and errors in covariates," Computational Statistics, Springer, vol. 31(3), pages 1031-1057, September.
    16. David Kohns & Tibor Szendrei, 2020. "Horseshoe Prior Bayesian Quantile Regression," Papers 2006.07655, arXiv.org, revised Mar 2021.
    17. Petrella, Lea & Raponi, Valentina, 2019. "Joint estimation of conditional quantiles in multivariate linear regression models with an application to financial distress," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 70-84.
    18. Chen, Cathy W.S. & Gerlach, Richard & Wei, D.C.M., 2009. "Bayesian causal effects in quantiles: Accounting for heteroscedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 1993-2007, April.
    19. Zijian Zeng & Meng Li, 2020. "Bayesian Median Autoregression for Robust Time Series Forecasting," Papers 2001.01116, arXiv.org, revised Dec 2020.
    20. Liu Yuan & Bottai Matteo, 2009. "Mixed-Effects Models for Conditional Quantiles with Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-24, November.
    21. Mai Dao & Lam Nguyen, 2025. "Variable selection in macroeconomic stress test: a Bayesian quantile regression approach," Empirical Economics, Springer, vol. 68(3), pages 1113-1169, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:96:y:2016:i:c:p:133-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.