IDEAS home Printed from
   My bibliography  Save this article

Inference for grouped data with a truncated skew-Laplace distribution


  • Rubio, F.J.
  • Steel, M.F.J.


The skew-Laplace distribution has been used for modelling particle size with point observations. In reality, the observations are truncated and grouped (rounded). This must be formally taken into account for accurate modelling, and it is shown how this leads to convenient closed-form expressions for the likelihood in this model. In a Bayesian framework, "noninformative" benchmark priors, which only require the choice of a single scalar prior hyperparameter, are specified. Conditions for the existence of the posterior distribution are derived when rounding and various forms of truncation are considered. The main application focus is on modelling microbiological data obtained with flow cytometry. However, the model is also applied to data often used to illustrate other skewed distributions, and it is shown that our modelling compares favourably with the popular skew-Student models. Further examples with simulated data illustrate the wide applicability of the model.

Suggested Citation

  • Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3218-3231

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. H. Schneeweiss & J. Komlos & A. Ahmad, 2010. "Symmetric and asymmetric rounding: a review and some new results," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 247-271, September.
    2. Trindade, A. Alexandre & Zhu, Yun, 2007. "Approximating the distributions of estimators of financial risk under an asymmetric Laplace law," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3433-3447, April.
    3. Fernández, Carmen & Steel, Mark F. J., 1999. "Reference priors for the general location-scale modelm," Statistics & Probability Letters, Elsevier, vol. 43(4), pages 377-384, July.
    4. Ferreira, Jose T.A.S. & Steel, Mark F.J., 2006. "A Constructive Representation of Univariate Skewed Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 823-829, June.
    5. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the "t"-distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    7. Thaís C. O. Fonseca & Marco A. R. Ferreira & Helio S. Migon, 2008. "Objective Bayesian analysis for the Student-t regression model," Biometrika, Biometrika Trust, vol. 95(2), pages 325-333.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:12:p:3218-3231. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.