IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v14y2014i2p271-291.html
   My bibliography  Save this article

Estimation methods for expected shortfall

Author

Listed:
  • Saralees Nadarajah
  • Bo Zhang
  • Stephen Chan

Abstract

Introduced in the 1980s, value at risk has been a popular measure of financial risk. However, value at risk suffers from a number of drawbacks as measure of financial risk. An alternative measure referred to as expected shortfall was introduced in late 1990s to circumvent these drawbacks. Much theory have been developed since then. The developments have been most intensive in recent years.However, we are not aware of any comprehensive review of known estimation methods for expected shortfall. We feel it is timely that such a review is written. This paper (containing six sections and over 140 references) attempts that task with emphasis on recent developments. We expect this review to serve as a source of reference and encourage further research with respect to measures of financial risk.

Suggested Citation

  • Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
  • Handle: RePEc:taf:quantf:v:14:y:2014:i:2:p:271-291
    DOI: 10.1080/14697688.2013.816767
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2013.816767
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2013.816767?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. James W. Taylor, 2008. "Using Exponentially Weighted Quantile Regression to Estimate Value at Risk and Expected Shortfall," Journal of Financial Econometrics, Oxford University Press, vol. 6(3), pages 382-406, Summer.
    3. Chen, Ying & Härdle, Wolfgang & Jeong, Seok-Oh, 2008. "Nonparametric Risk Management With Generalized Hyperbolic Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 910-923.
    4. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
    5. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components1," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55, October.
    6. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    7. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    8. Franco Peracchi & Andrei V. Tanase, 2008. "On estimating the conditional expected shortfall," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 471-493, September.
    9. Wong, C.S., 2011. "Modeling Hong Kong’s stock index with the Student t-mixture autoregressive model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1334-1343.
    10. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Working Paper 1159, Economics Department, Queen's University.
    11. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.
    12. Harvey, Campbell R. & Siddique, Akhtar, 1999. "Autoregressive Conditional Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(4), pages 465-487, December.
    13. Maria Rosa Borges, 2011. "Random walk tests for the Lisbon stock market," Applied Economics, Taylor & Francis Journals, vol. 43(5), pages 631-639.
    14. Zhu, Dongming & Galbraith, John W., 2010. "A generalized asymmetric Student-t distribution with application to financial econometrics," Journal of Econometrics, Elsevier, vol. 157(2), pages 297-305, August.
    15. Bing Liang & Hyuna Park, 2007. "Risk Measures for Hedge Funds: a Cross‐sectional Approach," European Financial Management, European Financial Management Association, vol. 13(2), pages 333-370, March.
    16. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    17. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," PSE-Ecole d'économie de Paris (Postprint) hal-00511965, HAL.
    18. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    19. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    20. Nam, Hee Seok & Tang, Qihe & Yang, Fan, 2011. "Characterization of upper comonotonicity via tail convex order," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 368-373, May.
    21. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    22. I. D. Hill & R. Hill & R. L. Holder, 1976. "Fitting Johnson Curves by Moments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 25(2), pages 180-189, June.
    23. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    24. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    25. Krehbiel, Tim & Adkins, Lee C., 2008. "Extreme daily changes in U.S. Dollar London inter-bank offer rates," International Review of Economics & Finance, Elsevier, vol. 17(3), pages 397-411.
    26. Lindström, Erik & Regland, Fredrik, 2012. "Modeling extreme dependence between European electricity markets," Energy Economics, Elsevier, vol. 34(4), pages 899-904.
    27. Zhu, Dongming & Zinde-Walsh, Victoria, 2009. "Properties and estimation of asymmetric exponential power distribution," Journal of Econometrics, Elsevier, vol. 148(1), pages 86-99, January.
    28. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    29. Werner Hürlimann, 2004. "Distortion Risk Measures and Economic Capital," North American Actuarial Journal, Taylor & Francis Journals, vol. 8(1), pages 86-95.
    30. Trindade, A. Alexandre & Zhu, Yun, 2007. "Approximating the distributions of estimators of financial risk under an asymmetric Laplace law," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3433-3447, April.
    31. Martin Hellmich & Stefan Kassberger, 2011. "Efficient and robust portfolio optimization in the multivariate Generalized Hyperbolic framework," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1503-1516.
    32. M. C. Jones & M. J. Faddy, 2003. "A skew extension of the t‐distribution, with applications," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 159-174, February.
    33. Fajardo, José & Farias, Aquiles, 2010. "Derivative pricing using multivariate affine generalized hyperbolic distributions," Journal of Banking & Finance, Elsevier, vol. 34(7), pages 1607-1617, July.
    34. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    35. Pafka, Szilárd & Kondor, Imre, 2001. "Evaluating the RiskMetrics methodology in measuring volatility and Value-at-Risk in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 305-310.
    36. Bi, Guang & Giles, David E., 2009. "Modelling the financial risk associated with U.S. movie box office earnings," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(9), pages 2759-2766.
    37. Deschamps, Philippe J., 2012. "Bayesian estimation of generalized hyperbolic skewed student GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3035-3054.
    38. Bauer, Christian, 2000. "Value at risk using hyperbolic distributions," Journal of Economics and Business, Elsevier, vol. 52(5), pages 455-467.
    39. Weixian Wei, 2002. "Forecasting stock market volatility with non-linear GARCH models: a case for China," Applied Economics Letters, Taylor & Francis Journals, vol. 9(3), pages 163-166.
    40. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    41. Cheung, Ka Chun, 2009. "Upper comonotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 35-40, August.
    42. Rachev, Svetlozar & Jasic, Teo & Stoyanov, Stoyan & Fabozzi, Frank J., 2007. "Momentum strategies based on reward-risk stock selection criteria," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2325-2346, August.
    43. Simon A. Broda & Marc S. Paolella, 2009. "CHICAGO: A Fast and Accurate Method for Portfolio Risk Calculation," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 412-436, Fall.
    44. Kerkhof, Jeroen & Melenberg, Bertrand, 2004. "Backtesting for risk-based regulatory capital," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1845-1865, August.
    45. Inui, Koji & Kijima, Masaaki, 2005. "On the significance of expected shortfall as a coherent risk measure," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 853-864, April.
    46. Deepak Jadhav & T.V. Ramanathan & U.V. Naik-Nimbalkar, 2009. "Modified Estimators of the Expected Shortfall," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 8(2), pages 87-107, May.
    47. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    48. Furman, Edward & Landsman, Zinoviy, 2005. "Risk capital decomposition for a multivariate dependent gamma portfolio," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 635-649, December.
    49. James W. Taylor, 2008. "Estimating Value at Risk and Expected Shortfall Using Expectiles," Journal of Financial Econometrics, Oxford University Press, vol. 6(2), pages 231-252, Spring.
    50. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2012. "Option Pricing for GARCH-type Models with Generalized Hyperbolic Innovations," Post-Print hal-00511965, HAL.
    51. Dennis Frestad & Fred Espen Benth & Steen Koekebakker, 2010. "Modeling Term Structure Dynamics in the Nordic Electricity Swap Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 53-86.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    2. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    3. Zhu, Dongming & Galbraith, John W., 2011. "Modeling and forecasting expected shortfall with the generalized asymmetric Student-t and asymmetric exponential power distributions," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 765-778, September.
    4. Fiorani, Filo, 2004. "Option Pricing Under the Variance Gamma Process," MPRA Paper 15395, University Library of Munich, Germany.
    5. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    6. Yacine Aït-Sahalia & Jean Jacod, 2012. "Analyzing the Spectrum of Asset Returns: Jump and Volatility Components in High Frequency Data," Journal of Economic Literature, American Economic Association, vol. 50(4), pages 1007-1050, December.
    7. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    8. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    9. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    10. Svetlana Boyarchenko & Sergei Levendorskiĭ, 2019. "Sinh-Acceleration: Efficient Evaluation Of Probability Distributions, Option Pricing, And Monte Carlo Simulations," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-49, May.
    11. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    12. Vijverberg, Chu-Ping C. & Vijverberg, Wim P.M. & Taşpınar, Süleyman, 2016. "Linking Tukey’s legacy to financial risk measurement," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 595-615.
    13. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    14. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    15. Liuren Wu, 2006. "Dampened Power Law: Reconciling the Tail Behavior of Financial Security Returns," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1445-1474, May.
    16. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    17. Broda, Simon A. & Krause, Jochen & Paolella, Marc S., 2018. "Approximating expected shortfall for heavy-tailed distributions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 184-203.
    18. Chan, Tat Lung (Ron), 2020. "Hedging and pricing early-exercise options with complex fourier series expansion," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    19. Cerqueti, Roy & Giacalone, Massimiliano & Panarello, Demetrio, 2019. "A Generalized Error Distribution Copula-based method for portfolios risk assessment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 687-695.
    20. Chen, Qian & Gerlach, Richard & Lu, Zudi, 2012. "Bayesian Value-at-Risk and expected shortfall forecasting via the asymmetric Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3498-3516.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:14:y:2014:i:2:p:271-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.