IDEAS home Printed from
   My bibliography  Save this article

Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model


  • Athanassios N. Avramidis

    () (Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada)

  • Pierre L'Ecuyer

    () (Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, H3C 3J7, Canada)


We develop and study efficient Monte Carlo algorithms for pricing path-dependent options with the variance gamma model. The key ingredient is difference-of-gamma bridge sampling, based on the representation of a variance gamma process as the difference of two increasing gamma processes. For typical payoffs, we obtain a pair of estimators (named low and high) with expectations that (1) are monotone along any such bridge sampler, and (2) contain the continuous-time price. These estimators provide pathwise bounds on unbiased estimators that would be more expensive (infinitely expensive in some situations) to compute. By using these bounds with extrapolation techniques, we obtain significant efficiency improvements by work reduction. We then combine the gamma bridge sampling with randomized quasi-Monte Carlo to reduce the variance and thus further improve the efficiency. We illustrate the large efficiency improvements on numerical examples for Asian, lookback, and barrier options.

Suggested Citation

  • Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
  • Handle: RePEc:inm:ormnsc:v:52:y:2006:i:12:p:1930-1944

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    3. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55.
    4. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    5. Fredrik Åkesson & John P. Lehoczky, 2000. "Path Generation for Quasi-Monte Carlo Simulation of Mortgage-Backed Securities," Management Science, INFORMS, vol. 46(9), pages 1171-1187, September.
    6. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    2. Ye, Zhi-Sheng, 2013. "On the conditional increments of degradation processes," Statistics & Probability Letters, Elsevier, vol. 83(11), pages 2531-2536.
    3. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2012. "A general control variate method for option pricing under Lévy processes," European Journal of Operational Research, Elsevier, vol. 221(2), pages 368-377.
    4. Klößner, Stefan & Becker, Martin & Friedmann, Ralph, 2012. "Modeling and measuring intraday overreaction of stock prices," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1152-1163.
    5. Wang, Chou-Wen & Wu, Chin-Wen & Tzang, Shyh-Weir, 2012. "Implementing option pricing models when asset returns follow an autoregressive moving average process," International Review of Economics & Finance, Elsevier, vol. 24(C), pages 8-25.
    6. Adrien Genin & Peter Tankov, 2016. "Optimal importance sampling for L\'evy Processes," Papers 1608.04621,
    7. Madan, Dilip B. & Schoutens, Wim, 2013. "Systemic risk tradeoffs and option prices," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 222-230.
    8. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    9. Gunther Leobacher, 2017. "A short introduction to quasi-Monte Carlo option pricing," Papers 1707.04293,, revised Jul 2017.
    10. Baldeaux Jan, 2008. "Quasi-Monte Carlo methods for the Kou model," Monte Carlo Methods and Applications, De Gruyter, vol. 14(4), pages 281-302, January.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:52:y:2006:i:12:p:1930-1944. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.