IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i3p1729-1748.html
   My bibliography  Save this article

Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning

Author

Listed:
  • Pierre L’Ecuyer

    (Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada)

  • Florian Puchhammer

    (Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Basque Center for Applied Mathematics, 48009 Bilbao, Basque Country, Spain)

  • Amal Ben Abdellah

    (Département d’Informatique et de Recherche Opérationnelle, Université de Montréal, Montréal, Québec H3C 3J7, Canada)

Abstract

Estimating the unknown density from which a given independent sample originates is more difficult than estimating the mean in the sense that, for the best popular nonparametric density estimators, the mean integrated square error converges more slowly than at the canonical rate of O ( 1 / n ) . When the sample is generated from a simulation model and we have control over how this is done, we can do better. We examine an approach in which conditional Monte Carlo yields, under certain conditions, a random conditional density that is an unbiased estimator of the true density at any point. By averaging independent replications, we obtain a density estimator that converges at a faster rate than the usual ones. Moreover, combining this new type of estimator with randomized quasi–Monte Carlo to generate the samples typically brings a larger improvement on the error and convergence rate than for the usual estimators because the new estimator is smoother as a function of the underlying uniform random numbers. Summary of Contribution: Stochastic simulation is commonly used to estimate the mathematical expectation of some output random variable X together with a confidence interval for this expectation. But the simulations usually provide information to do much more, such as estimating the entire distribution (or density) of X . Histograms are routinely provided by standard simulation software, but they are very primitive density estimators. Kernel density estimators perform better, but they are trickier to use, have bias, and their mean square error converges more slowly than the canonical rate of O (1/ n ) with n independent samples. In this paper, we explain how to construct unbiased density estimators that converge at the canonical rate and even much faster when combined with randomized quasi–Monte Carlo. The key idea is to use conditional Monte Carlo to hide appropriate information and obtain a computable (random) conditional density, which acts (under certain conditions) as an unbiased density estimator. Moreover, this sample density is typically smoother than the classic density estimators as a function of the underlying uniform random numbers, so it can get along much better with randomized quasi–Monte Carlo methods. This offers an opportunity to further improve the O (1/ n ) rate. We observe rates near O (1/ n 2 ) on some examples, and we give conditions under which this type of rate provably holds. The proposed approach is simple, easy to implement, and extremely effective, so it provides a significant addition to the stochastic simulation toolbox.

Suggested Citation

  • Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1729-1748
    DOI: 10.1287/ijoc.2021.1135
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1135
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    3. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    4. Asmussen, Søren, 2018. "Conditional Monte Carlo for sums, with applications to insurance and finance," Annals of Actuarial Science, Cambridge University Press, vol. 12(2), pages 455-478, September.
    5. Athanassios N. Avramidis & James R. Wilson, 1996. "Integrated Variance Reduction Strategies for Simulation," Operations Research, INFORMS, vol. 44(2), pages 327-346, April.
    6. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    7. Pierre L'Ecuyer & Gaétan Perron, 1994. "On the Convergence Rates of IPA and FDC Derivative Estimators," Operations Research, INFORMS, vol. 42(4), pages 643-656, August.
    8. Athanassios N. Avramidis & James R. Wilson, 1998. "Correlation-Induction Techniques for Estimating Quantiles in Simulation Experiments," Operations Research, INFORMS, vol. 46(4), pages 574-591, August.
    9. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504.
    10. Michael C. Fu & L. Jeff Hong & Jian-Qiang Hu, 2009. "Conditional Monte Carlo Estimation of Quantile Sensitivities," Management Science, INFORMS, vol. 55(12), pages 2019-2027, December.
    11. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    12. P L'Ecuyer & E Buist, 2008. "On the interaction between stratification and control variates, with illustrations in a call centre simulation," Journal of Simulation, Taylor & Francis Journals, vol. 2(1), pages 29-40, March.
    13. Zhenyu Cui & Michael C. Fu & Jian-Qiang Hu & Yanchu Liu & Yijie Peng & Lingjiong Zhu, 2020. "On the Variance of Single-Run Unbiased Stochastic Derivative Estimators," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 390-407, April.
    14. Pierre L’Ecuyer & Christiane Lemieux, 2002. "Recent Advances in Randomized Quasi-Monte Carlo Methods," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 419-474, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
    2. E Saliby & R J Paul, 2009. "A farewell to the use of antithetic variates in Monte Carlo simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 1026-1035, July.
    3. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    4. Jong Jun Park & Geon Ho Choe, 2016. "A new variance reduction method for option pricing based on sampling the vertices of a simplex," Quantitative Finance, Taylor & Francis Journals, vol. 16(8), pages 1165-1173, August.
    5. Hatem Ben-Ameur & Pierre L'Ecuyer & Christiane Lemieux, 2004. "Combination of General Antithetic Transformations and Control Variables," Mathematics of Operations Research, INFORMS, vol. 29(4), pages 946-960, November.
    6. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    7. Raimova, Gulnora, 2011. "Variance reduction methods at the pricing of weather options," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 21(1), pages 3-15.
    8. Jiaqiao Hu & Yijie Peng & Gongbo Zhang & Qi Zhang, 2022. "A Stochastic Approximation Method for Simulation-Based Quantile Optimization," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2889-2907, November.
    9. Pierre L'Ecuyer & Christian Lécot & Bruno Tuffin, 2008. "A Randomized Quasi-Monte Carlo Simulation Method for Markov Chains," Operations Research, INFORMS, vol. 56(4), pages 958-975, August.
    10. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    11. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    12. Guangxin Jiang & Michael C. Fu, 2015. "Technical Note—On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis," Operations Research, INFORMS, vol. 63(2), pages 435-441, April.
    13. Baldeaux Jan, 2008. "Quasi-Monte Carlo methods for the Kou model," Monte Carlo Methods and Applications, De Gruyter, vol. 14(4), pages 281-302, January.
    14. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    15. Weihuan Huang & Nifei Lin & L. Jeff Hong, 2022. "Monte-Carlo Estimation of CoVaR," Papers 2210.06148, arXiv.org.
    16. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    17. L’Ecuyer, P. & Sanvido, C., 2010. "Coupling from the past with randomized quasi-Monte Carlo," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(3), pages 476-489.
    18. Shane G. Henderson & Peter W. Glynn, 2001. "Computing Densities for Markov Chains via Simulation," Mathematics of Operations Research, INFORMS, vol. 26(2), pages 375-400, May.
    19. Xing Jin & Michael C. Fu & Xiaoping Xiong, 2003. "Probabilistic Error Bounds for Simulation Quantile Estimators," Management Science, INFORMS, vol. 49(2), pages 230-246, February.
    20. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:3:p:1729-1748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.