IDEAS home Printed from
   My bibliography  Save this article

Randomized quasi-Monte Carlo methods in pricing securities


  • Okten, Giray
  • Eastman, Warren


No abstract is available for this item.

Suggested Citation

  • Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
  • Handle: RePEc:eee:dyncon:v:28:y:2004:i:12:p:2399-2426

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    2. Tuffin Bruno, 1996. "On the use of low discrepancy sequences in Monte Carlo methods," Monte Carlo Methods and Applications, De Gruyter, vol. 2(4), pages 295-320, December.
    3. den Haan, Wouter J & Marcet, Albert, 1990. "Solving the Stochastic Growth Model by Parameterizing Expectations," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 31-34, January.
    4. S. Ninomiya & S. Tezuka, 1996. "Toward real-time pricing of complex financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 1-20.
    5. Jenny X. Li & Peter Winker, 2003. "Time Series Simulation with Quasi Monte Carlo Methods," Computational Economics, Springer;Society for Computational Economics, vol. 21(1_2), pages 23-43, February.
    6. Tan, Ken Seng & Boyle, Phelim P., 2000. "Applications of randomized low discrepancy sequences to the valuation of complex securities," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1747-1782, October.
    7. Corwin Joy & Phelim P. Boyle & Ken Seng Tan, 1996. "Quasi-Monte Carlo Methods in Numerical Finance," Management Science, INFORMS, vol. 42(6), pages 926-938, June.
    8. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    9. Franz, Wolfgang & Göggelmann, Klaus & Schellhorn, Martin & Winker, Peter, 1998. "Quasi-Monte Carlo Methods in Stochastic Simulations: An Application to Fiscal Policy Simulations using an Aggregate Disequilibrium Model of the West German Economy," ZEW Discussion Papers 98-03, ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    2. Joshi, Mark & Yang, Chao, 2011. "Fast delta computations in the swap-rate market model," Journal of Economic Dynamics and Control, Elsevier, vol. 35(5), pages 764-775, May.
    3. Jacob Lundgren & Yuri Shpolyanskiy, 2017. "Approaches to Asian Option Pricing with Discrete Dividends," Papers 1702.00994,
    4. Beveridge, Christopher & Joshi, Mark & Tang, Robert, 2013. "Practical policy iteration: Generic methods for obtaining rapid and tight bounds for Bermudan exotic derivatives using Monte Carlo simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 37(7), pages 1342-1361.
    5. Linlin Xu & Giray Ökten, 2015. "High-performance financial simulation using randomized quasi-Monte Carlo methods," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1425-1436, August.
    6. repec:eee:reensy:v:152:y:2016:i:c:p:281-295 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:28:y:2004:i:12:p:2399-2426. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.