IDEAS home Printed from https://ideas.repec.org/a/bpj/mcmeap/v26y2020i4p293-301n5.html
   My bibliography  Save this article

Implementing de-biased estimators using mixed sequences

Author

Listed:
  • Polala Arun Kumar

    (Department of Mathematics, Florida State University, TallahasseeFL 32306-4510, USA)

  • Ökten Giray

    (Department of Mathematics, Florida State University, TallahasseeFL 32306-4510, USA)

Abstract

We describe an implementation of the de-biased estimator using mixed sequences; these are sequences obtained from pseudorandom and low-discrepancy sequences. We use this implementation to numerically solve some stochastic differential equations from computational finance. The mixed sequences, when combined with Brownian bridge or principal component analysis constructions, offer convergence rates significantly better than the Monte Carlo implementation.

Suggested Citation

  • Polala Arun Kumar & Ökten Giray, 2020. "Implementing de-biased estimators using mixed sequences," Monte Carlo Methods and Applications, De Gruyter, vol. 26(4), pages 293-301, December.
  • Handle: RePEc:bpj:mcmeap:v:26:y:2020:i:4:p:293-301:n:5
    DOI: 10.1515/mcma-2020-2075
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/mcma-2020-2075
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/mcma-2020-2075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McLeish, Don, 2011. "A general method for debiasing a Monte Carlo estimator," Monte Carlo Methods and Applications, De Gruyter, vol. 17(4), pages 301-315, December.
    2. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    3. Chang-Han Rhee & Peter W. Glynn, 2015. "Unbiased Estimation with Square Root Convergence for SDE Models," Operations Research, INFORMS, vol. 63(5), pages 1026-1043, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Zhenyu & Fu, Michael C. & Peng, Yijie & Zhu, Lingjiong, 2020. "Optimal unbiased estimation for expected cumulative discounted cost," European Journal of Operational Research, Elsevier, vol. 286(2), pages 604-618.
    2. Zhou, Zhengqing & Wang, Guanyang & Blanchet, Jose H. & Glynn, Peter W., 2023. "Unbiased Optimal Stopping via the MUSE," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    3. Ruzayqat Hamza M. & Jasra Ajay, 2020. "Unbiased estimation of the solution to Zakai’s equation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(2), pages 113-129, June.
    4. Li, Yuanbo & Chan, Chu Kin & Yau, Chun Yip & Ng, Wai Leong & Lam, Henry, 2024. "Burn-in selection in simulating stationary time series," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    5. Imry Rosenbaum & Jeremy Staum, 2017. "Multilevel Monte Carlo Metamodeling," Operations Research, INFORMS, vol. 65(4), pages 1062-1077, August.
    6. Zhengqing Zhou & Guanyang Wang & Jose Blanchet & Peter W. Glynn, 2021. "Unbiased Optimal Stopping via the MUSE," Papers 2106.02263, arXiv.org, revised Dec 2022.
    7. Matti Vihola & Jouni Helske & Jordan Franks, 2020. "Importance sampling type estimators based on approximate marginal Markov chain Monte Carlo," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1339-1376, December.
    8. Yasa Syed & Guanyang Wang, 2023. "Optimal randomized multilevel Monte Carlo for repeatedly nested expectations," Papers 2301.04095, arXiv.org, revised May 2023.
    9. Goda, Takashi & Kitade, Wataru, 2023. "Constructing unbiased gradient estimators with finite variance for conditional stochastic optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 743-763.
    10. Dereich, Steffen, 2021. "General multilevel adaptations for stochastic approximation algorithms II: CLTs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 226-260.
    11. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    12. Jacob Lundgren & Yuri Shpolyanskiy, 2017. "Approaches to Asian Option Pricing with Discrete Dividends," Papers 1702.00994, arXiv.org, revised Mar 2021.
    13. Michael B. Giles & Abdul-Lateef Haji-Ali & Jonathan Spence, 2023. "Efficient Risk Estimation for the Credit Valuation Adjustment," Papers 2301.05886, arXiv.org, revised May 2024.
    14. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "Efficient simulation of generalized SABR and stochastic local volatility models based on Markov chain approximations," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1046-1062.
    15. Andersson, Patrik & Kohatsu-Higa, Arturo & Yuasa, Tomooki, 2020. "Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5543-5574.
    16. Liu, Yaning & Yousuff Hussaini, M. & Ökten, Giray, 2016. "Accurate construction of high dimensional model representation with applications to uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 281-295.
    17. Bruno Bouchard & Xiaolu Tan, 2025. "Unbiased simulation of Asian options," Papers 2504.16349, arXiv.org.
    18. Ömür Ugur, 2008. "An Introduction to Computational Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number p556, February.
    19. Yiran Chen & Giray Ökten, 2022. "A goodness-of-fit test for copulas based on the collision test," Statistical Papers, Springer, vol. 63(5), pages 1369-1385, October.
    20. Devang Sinha & Siddhartha P. Chakrabarty, 2022. "Multilevel Richardson-Romberg and Importance Sampling in Derivative Pricing," Papers 2209.00821, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:mcmeap:v:26:y:2020:i:4:p:293-301:n:5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.