IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v43y2008i3p327-338.html
   My bibliography  Save this article

Computation of optimal portfolios using simulation-based dimension reduction

Author

Listed:
  • Boyle, Phelim
  • Imai, Junichi
  • Tan, Ken Seng

Abstract

This paper describes a simple and efficient method for determining the optimal portfolio for a risk averse investor. The portfolio selection problem is of long standing interest to finance scholars and it has obvious practical relevance. In a complete market the modern procedure for computing the optimal portfolio weights is known as the martingale approach. Recently, alternative implementations of the martingale approach based on Monte Carlo methods have been proposed. These methods use Monte Carlo simulation to compute stochastic integrals. This paper examines the efficient implementation of one of these methods due to [Cvitanic, J., Goukasian, L., Zapatero, F. 2003. Monte Carlo computation of optimal portfolios in complete markets. J. Econom. Dynam. Control 27, 971-986]. We explain why a naive application of the quasi-Monte Carlo method to this problem is often only marginally more efficient than the classical Monte Carlo method. Using the dimension reduction technique of [Imai, J., Tan, K.S., 2007. A general dimension reduction method for derivative pricing. J. Comput. Financ. 10 (2), 129-155] it is possible to significantly reduce the effective dimension of the problem. The paper shows why the proposed technique leads to a dramatic improvement in efficiency.

Suggested Citation

  • Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
  • Handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:327-338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(08)00058-9
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Isabelle Bajeux-Besnainou & James V. Jordan & Roland Portait, 2001. "An Asset Allocation Puzzle: Comment," American Economic Review, American Economic Association, vol. 91(4), pages 1170-1179, September.
    3. S. Ninomiya & S. Tezuka, 1996. "Toward real-time pricing of complex financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 1-20.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    5. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    6. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    7. Corwin Joy & Phelim P. Boyle & Ken Seng Tan, 1996. "Quasi-Monte Carlo Methods in Numerical Finance," Management Science, INFORMS, vol. 42(6), pages 926-938, June.
    8. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux & Nizar Touzi, 1999. "Applications of Malliavin calculus to Monte Carlo methods in finance," Finance and Stochastics, Springer, vol. 3(4), pages 391-412.
    9. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    10. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    11. Eric Fournié & Jean-Michel Lasry & Pierre-Louis Lions & Jérôme Lebuchoux, 2001. "Applications of Malliavin calculus to Monte-Carlo methods in finance. II," Finance and Stochastics, Springer, vol. 5(2), pages 201-236.
    12. Michael J. Brennan & Yihong Xia, 2000. "Stochastic Interest Rates and the Bond-Stock Mix," Review of Finance, European Finance Association, vol. 4(2), pages 197-210.
    13. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    14. Canner, Niko & Mankiw, N Gregory & Weil, David N, 1997. "An Asset Allocation Puzzle," American Economic Review, American Economic Association, vol. 87(1), pages 181-191, March.
    15. Cvitanic, Jaksa & Goukasian, Levon & Zapatero, Fernando, 2003. "Monte Carlo computation of optimal portfolios in complete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 971-986, April.
    16. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    17. Sobol′ , I.M, 2001. "Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 55(1), pages 271-280.
    18. Tan, Ken Seng & Boyle, Phelim P., 2000. "Applications of randomized low discrepancy sequences to the valuation of complex securities," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1747-1782, October.
    19. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    20. Fredrik Åkesson & John P. Lehoczky, 2000. "Path Generation for Quasi-Monte Carlo Simulation of Mortgage-Backed Securities," Management Science, INFORMS, vol. 46(9), pages 1171-1187, September.
    21. Jérôme Detemple & René Garcia & Marcel Rindisbacher, 2005. "Asymptotic Properties of Monte Carlo Estimators of Derivatives," Management Science, INFORMS, vol. 51(11), pages 1657-1675, November.
    22. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    23. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    24. Lioui, Abraham, 2007. "The asset allocation puzzle is still a puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1185-1216, April.
    25. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yichen & Escobar-Anel, Marcos, 2022. "Polynomial affine approach to HARA utility maximization with applications to OrnsteinUhlenbeck 4/2 models," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    2. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    3. Lim, Andrew E.B. & Wong, Bernard, 2010. "A benchmarking approach to optimal asset allocation for insurers and pension funds," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 317-327, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farid Mkouar & Jean-Luc Prigent, 2014. "Long-Term Investment with Stochastic Interest and Inflation Rates Incompleteness and Compensating Variation," Working Papers 2014-301, Department of Research, Ipag Business School.
    2. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    3. Jérôme Detemple, 2014. "Portfolio Selection: A Review," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 1-21, April.
    4. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    5. John H. Cochrane, 2014. "A Mean-Variance Benchmark for Intertemporal Portfolio Theory," Journal of Finance, American Finance Association, vol. 69(1), pages 1-49, February.
    6. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    7. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," The Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    8. Munk, Claus, 2008. "Portfolio and consumption choice with stochastic investment opportunities and habit formation in preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3560-3589, November.
    9. Farid Mkaouar & Jean-Luc Prigent & Ilyes Abid, 2019. "A Diffusion Model for Long-Term Optimization in the Presence of Stochastic Interest and Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 367-417, June.
    10. Weinbaum, David, 2005. "Subsistence consumption, habit formation and the demand for long-term bonds," Journal of Economics and Business, Elsevier, vol. 57(4), pages 273-287.
    11. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    12. Hong, Yi & Jin, Xing, 2018. "Semi-analytical solutions for dynamic portfolio choice in jump-diffusion models and the optimal bond-stock mix," European Journal of Operational Research, Elsevier, vol. 265(1), pages 389-398.
    13. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    14. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    15. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    16. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    17. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    18. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    19. Lioui, Abraham, 2013. "Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1066-1096.
    20. Lioui, Abraham, 2007. "The asset allocation puzzle is still a puzzle," Journal of Economic Dynamics and Control, Elsevier, vol. 31(4), pages 1185-1216, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:43:y:2008:i:3:p:327-338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.