IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Explicit solutions to dynamic portfolio choice problems: A continuous-time detour

Listed author(s):
  • Legendre, François
  • Togola, Djibril

Recently, many academic researchers have implemented several numerical procedures to solve a dynamic portfolio choice problem especially in incomplete markets. The subsequent numerical results are sometimes significantly different from one paper to another. Thus, they have all advocated the accuracy of their methods. This paper contributes to the previous accuracy debate by showing how to obtain some accurate numerical results without numerical approximations. We use the dynamic programming approach in continuous-time, and illustrate the framework with one risky and one riskless asset. The framework is flexible enough to cover all the HARA class of utility functions. We derive explicit solutions with a stochastic market price of risk and with a stochastic volatility. 7 countries are considered in numerical illustrations.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/pii/S0264999316300803
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Economic Modelling.

Volume (Year): 58 (2016)
Issue (Month): C ()
Pages: 627-641

as
in new window

Handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:627-641
DOI: 10.1016/j.econmod.2016.03.029
Contact details of provider: Web page: http://www.elsevier.com/locate/inca/30411

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Kim, Jerim & Kim, Bara & Moon, Kyoung-Sook & Wee, In-Suk, 2012. "Valuation of power options under Heston's stochastic volatility model," Journal of Economic Dynamics and Control, Elsevier, vol. 36(11), pages 1796-1813.
  2. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
  3. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
  4. Campbell, John Y & Shiller, Robert J, 1988. " Stock Prices, Earnings, and Expected Dividends," Journal of Finance, American Finance Association, vol. 43(3), pages 661-676, July.
  5. Yao, Haixiang & Li, Zhongfei & Chen, Shumin, 2014. "Continuous-time mean–variance portfolio selection with only risky assets," Economic Modelling, Elsevier, vol. 36(C), pages 244-251.
  6. Jérôme B. Detemple & René Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, 02.
  7. Bergstrom, A.R., 1984. "Continuous time stochastic models and issues of aggregation over time," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 20, pages 1145-1212 Elsevier.
  8. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, 08.
  9. Lorenzo Garlappi & Georgios Skoulakis, 2009. "Numerical Solutions to Dynamic Portfolio Problems: The Case for Value Function Iteration using Taylor Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 193-207, March.
  10. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
  11. Toshiki Honda & Shoji Kamimura, 2011. "On the Verification Theorem of Dynamic Portfolio-Consumption Problems with Stochastic Market Price of Risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(2), pages 151-166, May.
  12. Jules Binsbergen & Michael Brandt, 2007. "Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 355-367, May.
  13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
  14. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.
  15. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
  16. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
  17. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
  18. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
  19. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
  20. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
  21. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(01), pages 63-91, March.
  22. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters,in: THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472 World Scientific Publishing Co. Pte. Ltd..
  23. Campbell, John Y., 2003. "Consumption-based asset pricing," Handbook of the Economics of Finance,in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 13, pages 803-887 Elsevier.
  24. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
  25. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
  26. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
  27. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
  28. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
  29. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  30. Cvitanic, Jaksa & Goukasian, Levon & Zapatero, Fernando, 2003. "Monte Carlo computation of optimal portfolios in complete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 971-986, April.
  31. Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
  32. Detemple, Jérôme & Garcia, René & Rindisbacher, Marcel, 2005. "Intertemporal asset allocation: A comparison of methods," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2821-2848, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:58:y:2016:i:c:p:627-641. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.