IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp2022.html
   My bibliography  Save this paper

Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets

Author

Listed:
  • Chenxu Li

    (Peking University - Guanghua School of Management)

  • O. Scaillet

    (University of Geneva GSEM and GFRI; Swiss Finance Institute; University of Geneva - Research Center for Statistics)

  • Yiwen Shen

    (Columbia Business School - Decision Risk and Operations)

Abstract

This paper establishes a new decomposition of optimal dynamic portfolio choice under general incomplete-market diffusion models by disentangling the fundamental impacts on optimal policy from market incompleteness and flexible wealth-dependent utilities. We derive explicit dynamics of the components for the optimal policy, and obtain an equation system for solving the shadow price of market incompleteness, which is found to be dependent on both market state and wealth level. We identify a new important hedge component for non-myopic investors to hedge the uncertainty in shadow price due to variation in wealth level. As an application, we establish and compare the decompositions of optimal policy under general models with the prevalent HARA and CRRA utilities. Under nonrandom but possibly time-varying interest rate, we solve in closed-form the HARA policy as a combination of a bond holding scheme and a corresponding CRRA strategy. Finally, we develop a simulation method to implement the decomposition of optimal policy under the general incomplete market setting, whereas existing approaches remain elusive.

Suggested Citation

  • Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp2022
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3580735
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dumas, Bernard & Luciano, Elisa, 2017. "The Economics of Continuous-Time Finance," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262036541, December.
    2. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    3. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    4. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    5. Xing Jin & Allen X. Zhang, 2012. "Decomposition of Optimal Portfolio Weight in a Jump-Diffusion Model and Its Applications," Review of Financial Studies, Society for Financial Studies, vol. 25(9), pages 2877-2919.
    6. Laurent E. Calvet & Paolo Sodini, 2014. "Twin Picks: Disentangling the Determinants of Risk-Taking in Household Portfolios," Journal of Finance, American Finance Association, vol. 69(2), pages 867-906, April.
    7. Detemple, Jerome & Garcia, Rene & Rindisbacher, Marcel, 2006. "Asymptotic properties of Monte Carlo estimators of diffusion processes," Journal of Econometrics, Elsevier, vol. 134(1), pages 1-68, September.
    8. Jérôme B. Detemple & Ren Garcia & Marcel Rindisbacher, 2003. "A Monte Carlo Method for Optimal Portfolios," Journal of Finance, American Finance Association, vol. 58(1), pages 401-446, February.
    9. He, Hua & Pearson, Neil D., 1991. "Consumption and portfolio policies with incomplete markets and short-sale constraints: The infinite dimensional case," Journal of Economic Theory, Elsevier, vol. 54(2), pages 259-304, August.
    10. Jun Liu & Francis A. Longstaff & Jun Pan, 2003. "Dynamic Asset Allocation with Event Risk," Journal of Finance, American Finance Association, vol. 58(1), pages 231-259, February.
    11. Peter Christoffersen & Kris Jacobs & Karim Mimouni, 2010. "Volatility Dynamics for the S&P500: Evidence from Realized Volatility, Daily Returns, and Option Prices," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 3141-3189, August.
    12. Nikolai Roussanov, 2010. "Diversification and Its Discontents: Idiosyncratic and Entrepreneurial Risk in the Quest for Social Status," Journal of Finance, American Finance Association, vol. 65(5), pages 1755-1788, October.
    13. Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
    14. Jér^me Detemple & Marcel Rindisbacher, 2005. "Closed‐Form Solutions For Optimal Portfolio Selection With Stochastic Interest Rate And Investment Constraints," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 539-568, October.
    15. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    16. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    17. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    18. Brennan, Michael J. & Schwartz, Eduardo S. & Lagnado, Ronald, 1997. "Strategic asset allocation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1377-1403, June.
    19. Moreira, Alan & Muir, Tyler, 2019. "Should Long-Term Investors Time Volatility?," Journal of Financial Economics, Elsevier, vol. 131(3), pages 507-527.
    20. Campbell, John Y. & Chacko, George & Rodriguez, Jorge & Viceira, Luis M., 2004. "Strategic asset allocation in a continuous-time VAR model," Journal of Economic Dynamics and Control, Elsevier, vol. 28(11), pages 2195-2214, October.
    21. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    22. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    23. Hindy, Ayman & Huang, Chi-fu & Zhu, Steven H., 1997. "Numerical analysis of a free-boundary singular control problem in financial economics," Journal of Economic Dynamics and Control, Elsevier, vol. 21(2-3), pages 297-327.
    24. M. J. Brennan, 1998. "The Role of Learning in Dynamic Portfolio Decisions," Review of Finance, European Finance Association, vol. 1(3), pages 295-306.
    25. Michael J. Brennan & Yihong Xia, 2002. "Dynamic Asset Allocation under Inflation," Journal of Finance, American Finance Association, vol. 57(3), pages 1201-1238, June.
    26. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
    27. Jessica A. Wachter & Motohiro Yogo, 2010. "Why Do Household Portfolio Shares Rise in Wealth?," The Review of Financial Studies, Society for Financial Studies, vol. 23(11), pages 3929-3965, November.
    28. Jérome Detemple & Marcel Rindisbacher, 2010. "Dynamic Asset Allocation: Portfolio Decomposition Formula and Applications," Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 25-100, January.
    29. Lioui, Abraham & Poncet, Patrice, 2001. "On optimal portfolio choice under stochastic interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1841-1865, November.
    30. Ben G. Fitzpatrick & Wendell H. Fleming, 1991. "Numerical Methods for an Optimal Investment-Consumption Model," Mathematics of Operations Research, INFORMS, vol. 16(4), pages 823-841, November.
    31. Wachter, Jessica A., 2002. "Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(1), pages 63-91, March.
    32. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    33. Hua He & Neil D. Pearson, 1991. "Consumption and Portfolio Policies With Incomplete Markets and Short‐Sale Constraints: the Finite‐Dimensional Case1," Mathematical Finance, Wiley Blackwell, vol. 1(3), pages 1-10, July.
    34. Alexey Medvedev & Olivier Scaillet, 2007. "Approximation and Calibration of Short-Term Implied Volatilities Under Jump-Diffusion Stochastic Volatility," Review of Financial Studies, Society for Financial Studies, vol. 20(2), pages 427-459.
    35. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    36. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    37. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    38. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    39. Jérôme Detemple, 2014. "Portfolio Selection: A Review," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 1-21, April.
    40. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    41. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    42. Cvitanic, Jaksa & Goukasian, Levon & Zapatero, Fernando, 2003. "Monte Carlo computation of optimal portfolios in complete markets," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 971-986, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    2. Jérôme Detemple, 2014. "Portfolio Selection: A Review," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 1-21, April.
    3. Lioui, Abraham, 2013. "Time consistent vs. time inconsistent dynamic asset allocation: Some utility cost calculations for mean variance preferences," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 1066-1096.
    4. Thijs Kamma & Antoon Pelsser, 2019. "Near-Optimal Dynamic Asset Allocation in Financial Markets with Trading Constraints," Papers 1906.12317, arXiv.org, revised Oct 2019.
    5. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    6. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    7. Jin, Xing & Zhang, Kun, 2013. "Dynamic optimal portfolio choice in a jump-diffusion model with investment constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1733-1746.
    8. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    9. Castaneda, Pablo & Rudolph, Heinz P., 2011. "Upgrading investment regulations in second pillar pension systems : a proposal for Colombia," Policy Research Working Paper Series 5775, The World Bank.
    10. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    11. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    12. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    13. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    14. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    15. Romain Deguest & Lionel Martellini & Vincent Milhau, 2018. "A Reinterpretation of the Optimal Demand for Risky Assets in Fund Separation Theorems," Management Science, INFORMS, vol. 64(9), pages 4333-4347, September.
    16. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    17. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    18. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    19. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    20. Kamma, Thijs & Pelsser, Antoon, 2022. "Near-optimal asset allocation in financial markets with trading constraints," European Journal of Operational Research, Elsevier, vol. 297(2), pages 766-781.

    More about this item

    Keywords

    optimal portfolio choice; decomposition; incomplete market; wealth-dependent utility; closed-form;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp2022. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.