IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v29y2007i3p355-367.html
   My bibliography  Save this article

Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?

Author

Listed:
  • Jules Binsbergen
  • Michael Brandt

Abstract

Most dynamic programming methods deployed in the portfolio choice literature involve recursions on an approximated value function. The simulation-based method proposed recently by Brandt, Goyal, Santa-Clara, and Stroud (Review of Financial Studies, 18, 831–873, 2005), relies instead on recursive uses of approximated optimal portfolio weights. We examine the relative numerical performance of these two approaches. We show that when portfolio weights are constrained by short sale restrictions for example, iterating on optimized portfolio weights leads to superior results. Value function iterations result in a lower variance but disproportionately higher bias of the solution, especially when risk aversion is high and the investment horizon is long. Copyright Springer Science+Business Media, LLC 2007

Suggested Citation

  • Jules Binsbergen & Michael Brandt, 2007. "Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 355-367, May.
  • Handle: RePEc:kap:compec:v:29:y:2007:i:3:p:355-367
    DOI: 10.1007/s10614-006-9073-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-006-9073-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-006-9073-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    2. Balduzzi, Pierluigi & Lynch, Anthony W., 1999. "Transaction costs and predictability: some utility cost calculations," Journal of Financial Economics, Elsevier, vol. 52(1), pages 47-78, April.
    3. Dammon, Robert M & Spatt, Chester S & Zhang, Harold H, 2001. "Optimal Consumption and Investment with Capital Gains Taxes," The Review of Financial Studies, Society for Financial Studies, vol. 14(3), pages 583-616.
    4. Cochrane, John H, 1989. "The Sensitivity of Tests of the Intertemporal Allocation of Consumption to Near-Rational Alternatives," American Economic Review, American Economic Association, vol. 79(3), pages 319-337, June.
    5. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    6. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    2. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    3. Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Post-Print hal-02909342, HAL.
    4. Stanislav Anatolyev & Vladimir Pyrlik, 2021. "Shrinkage for Gaussian and t Copulas in Ultra-High Dimensions," CERGE-EI Working Papers wp699, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    5. Rongju Zhang & Nicolas Langrené & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2019. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Post-Print hal-02909207, HAL.
    6. Xavier Warin, 2016. "The Asset Liability Management problem of a nuclear operator : a numerical stochastic optimization approach," Papers 1611.04877, arXiv.org.
    7. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2018. "Local Control Regression: Improving the Least Squares Monte Carlo Method for Portfolio Optimization," Papers 1803.11467, arXiv.org, revised Sep 2018.
    8. Yichen Zhu & Marcos Escobar-Anel & Matt Davison, 2023. "A Polynomial-Affine Approximation for Dynamic Portfolio Choice," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1177-1213, October.
    9. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2017. "Skewed target range strategy for multiperiod portfolio optimization using a two-stage least squares Monte Carlo method," Papers 1704.00416, arXiv.org, revised Jun 2019.
    10. Farid Mkaouar & Jean-Luc Prigent & Ilyes Abid, 2019. "A Diffusion Model for Long-Term Optimization in the Presence of Stochastic Interest and Inflation Rates," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 367-417, June.
    11. Changhui Choi & Bong-Gyu Jang & Changki Kim & Sang-youn Roh, 2016. "Net Contribution, Liquidity, and Optimal Pension Management," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 83(4), pages 913-948, December.
    12. Fei Cong & Cornelis W. Oosterlee, 2017. "Accurate and Robust Numerical Methods for the Dynamic Portfolio Management Problem," Computational Economics, Springer;Society for Computational Economics, vol. 49(3), pages 433-458, March.
    13. Rongju Zhang & Nicolas Langren'e & Yu Tian & Zili Zhu & Fima Klebaner & Kais Hamza, 2016. "Dynamic portfolio optimization with liquidity cost and market impact: a simulation-and-regression approach," Papers 1610.07694, arXiv.org, revised Jun 2019.
    14. Mark Broadie & Weiwei Shen, 2017. "Numerical solutions to dynamic portfolio problems with upper bounds," Computational Management Science, Springer, vol. 14(2), pages 215-227, April.
    15. Björn Bick & Holger Kraft & Claus Munk, 2013. "Solving Constrained Consumption-Investment Problems by Simulation of Artificial Market Strategies," Management Science, INFORMS, vol. 59(2), pages 485-503, June.
    16. T. R. B. den Haan & K. W. Chau & M. van der Schans & C. W. Oosterlee, 2020. "Rule-based Strategies for Dynamic Life Cycle Investment," Papers 2011.02596, arXiv.org.
    17. Bart Diris & Franz Palm & Peter Schotman, 2015. "Long-Term Strategic Asset Allocation: An Out-of-Sample Evaluation," Management Science, INFORMS, vol. 61(9), pages 2185-2202, September.
    18. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2015. "A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function," Annals of Operations Research, Springer, vol. 229(1), pages 121-158, June.
    19. Arkadiy V. Sakhartov, 2017. "Economies of Scope, Resource Relatedness, and the Dynamics of Corporate Diversification," Strategic Management Journal, Wiley Blackwell, vol. 38(11), pages 2168-2188, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guidolin, Massimo & Timmermann, Allan, 2007. "Asset allocation under multivariate regime switching," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3503-3544, November.
    2. Najafi, Amir Abbas & Pourahmadi, Zahra, 2016. "An efficient heuristic method for dynamic portfolio selection problem under transaction costs and uncertain conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 154-162.
    3. Engsted, Tom & Pedersen, Thomas Q., 2012. "Return predictability and intertemporal asset allocation: Evidence from a bias-adjusted VAR model," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 241-253.
    4. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    5. Bazgour, Tarik & Heuchenne, Cedric & Sougné, Danielle, 2016. "Conditional portfolio allocation: Does aggregate market liquidity matter?," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 110-135.
    6. Fischer, Marcel & Kraft, Holger & Munk, Claus, 2013. "Asset allocation over the life cycle: How much do taxes matter?," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2217-2240.
    7. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    8. Jessica A. Wachter, 2010. "Asset Allocation," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 175-206, December.
    9. Jimmy E. Hilliard & Jitka Hilliard, 2018. "Rebalancing versus buy and hold: theory, simulation and empirical analysis," Review of Quantitative Finance and Accounting, Springer, vol. 50(1), pages 1-32, January.
    10. Kontosakos, Vasileios E. & Hwang, Soosung & Kallinterakis, Vasileios & Pantelous, Athanasios A., 2024. "Long-term dynamic asset allocation under asymmetric risk preferences," European Journal of Operational Research, Elsevier, vol. 312(2), pages 765-782.
    11. Martin B. Haugh & Leonid Kogan & Jiang Wang, 2006. "Evaluating Portfolio Policies: A Duality Approach," Operations Research, INFORMS, vol. 54(3), pages 405-418, June.
    12. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    13. Lorenzo Garlappi & Georgios Skoulakis, 2009. "Numerical Solutions to Dynamic Portfolio Problems: The Case for Value Function Iteration using Taylor Approximation," Computational Economics, Springer;Society for Computational Economics, vol. 33(2), pages 193-207, March.
    14. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2017. "Predictability and diversification benefits of investing in commodity and currency futures," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 52-66.
    15. Daniel Andrei & Michael Hasler, 2020. "Dynamic Attention Behavior Under Return Predictability," Management Science, INFORMS, vol. 66(7), pages 2906-2928, July.
    16. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    17. Luca Benzoni & Pierre Collin‐Dufresne & Robert S. Goldstein, 2007. "Portfolio Choice over the Life‐Cycle when the Stock and Labor Markets Are Cointegrated," Journal of Finance, American Finance Association, vol. 62(5), pages 2123-2167, October.
    18. Constantinos Kardaras & Hyeng Keun Koo & Johannes Ruf, 2022. "Estimation of growth in fund models," Papers 2208.02573, arXiv.org.
    19. Jiang, George J. & Yao, Tong & Yu, Tong, 2007. "Do mutual funds time the market? Evidence from portfolio holdings," Journal of Financial Economics, Elsevier, vol. 86(3), pages 724-758, December.
    20. Luca Benzoni & Pierre Collin-Dufresne & Robert S. Goldstein, 2005. "Portfolio Choice over the Life-Cycle in the Presence of 'Trickle Down' Labor Income," NBER Working Papers 11247, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:29:y:2007:i:3:p:355-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.