IDEAS home Printed from
   My bibliography  Save this paper

A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function


  • Taras Bodnar
  • Nestor Parolya
  • Wolfgang Schmid


In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are depending on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the simple-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods for real data.

Suggested Citation

  • Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2012. "A Closed-Form Solution of the Multi-Period Portfolio Choice Problem for a Quadratic Utility Function," Papers 1207.1003,, revised Nov 2014.
  • Handle: RePEc:arx:papers:1207.1003

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    3. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    4. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
    5. Amengual, Dante & Sentana, Enrique, 2010. "A comparison of mean-variance efficiency tests," Journal of Econometrics, Elsevier, vol. 154(1), pages 16-34, January.
    6. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55.
    7. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," Review of Economic Studies, Oxford University Press, vol. 25(2), pages 65-86.
    8. Michael W. Brandt & Pedro Santa-Clara, 2006. "Dynamic Portfolio Selection by Augmentingthe Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
    9. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    10. Mencía, Javier & Sentana, Enrique, 2009. "Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation," Journal of Econometrics, Elsevier, vol. 153(2), pages 105-121, December.
    11. Zhenyu Wang, 2005. "A Shrinkage Approach to Model Uncertainty and Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 673-705.
    12. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    13. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    14. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    15. Celikyurt, U. & Ozekici, S., 2007. "Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach," European Journal of Operational Research, Elsevier, vol. 179(1), pages 186-202, May.
    16. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
    17. Okhrin, Yarema & Schmid, Wolfgang, 2006. "Distributional properties of portfolio weights," Journal of Econometrics, Elsevier, vol. 134(1), pages 235-256, September.
    18. Merton, Robert C. & Samuelson, Paul A., 1974. "Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods," Journal of Financial Economics, Elsevier, vol. 1(1), pages 67-94, May.
    19. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters,in: THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472 World Scientific Publishing Co. Pte. Ltd..
    20. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    21. Campbell, John Y. & Viceira, Luis M., 2002. "Strategic Asset Allocation: Portfolio Choice for Long-Term Investors," OUP Catalogue, Oxford University Press, number 9780198296942.
    22. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
    23. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.
    24. Jules Binsbergen & Michael Brandt, 2007. "Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function?," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 355-367, May.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    2. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    3. David Bauder & Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2017. "Bayesian Inference of the Multi-Period Optimal Portfolio for an Exponential Utility," Papers 1705.06533,

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1207.1003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.