IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

On the Exact Solution of the Multi-Period Portfolio Choice Problem for an Exponential Utility under Return Predictability

  • Taras Bodnar
  • Nestor Parolya
  • Wolfgang Schmid

In this paper we derive the exact solution of the multi-period portfolio choice problem for an exponential utility function under return predictability. It is assumed that the asset returns depend on predictable variables and that the joint random process of the asset returns and the predictable variables follow a vector autoregressive process. We prove that the optimal portfolio weights depend on the covariance matrices of the next two periods and the conditional mean vector of the next period. The case without predictable variables and the case of independent asset returns are partial cases of our solution. Furthermore, we provide an empirical study where the cumulative empirical distribution function of the investor's wealth is calculated using the exact solution. It is compared with the investment strategy obtained under the additional assumption that the asset returns are independently distributed.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: Latest version
Download Restriction: no

Paper provided by in its series Papers with number 1207.1037.

in new window

Date of creation: Jul 2012
Date of revision:
Handle: RePEc:arx:papers:1207.1037
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Campbell, John, 1991. "A Variance Decomposition for Stock Returns," Scholarly Articles 3207695, Harvard University Department of Economics.
  2. Ping Li & Jianming Xia & Jia-an Yan, 2001. "Martingale Measure Method for Expected Utility Maximization in Discrete-Time Incomplete Markets," Annals of Economics and Finance, Society for AEF, vol. 2(2), pages 445-465, November.
  3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, 03.
  4. Suleyman Basak & Georgy Chabakauri, 2010. "Dynamic Mean-Variance Asset Allocation," Review of Financial Studies, Society for Financial Studies, vol. 23(8), pages 2970-3016, August.
  5. Yu, Bosco Wing-Tong & Pang, Wan Kai & Troutt, Marvin D. & Hou, Shui Hung, 2009. "Objective comparisons of the optimal portfolios corresponding to different utility functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 604-610, December.
  6. Fu, Chenpeng & Lari-Lavassani, Ali & Li, Xun, 2010. "Dynamic mean-variance portfolio selection with borrowing constraint," European Journal of Operational Research, Elsevier, vol. 200(1), pages 312-319, January.
  7. Mark Britten-Jones, 1999. "The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, 04.
  8. Campbell, John Y, 1996. "Understanding Risk and Return," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 298-345, April.
  9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-57, August.
  10. Campbell, John Y & Chan, Yeung Lewis & Viceira, Luis M, 2001. "A Multivariate Model of Strategic Asset Allocation," CEPR Discussion Papers 3070, C.E.P.R. Discussion Papers.
  11. Taras Bodnar & Nestor Parolya & Wolfgang Schmid, 2012. "On the Equivalence of Quadratic Optimization Problems Commonly Used in Portfolio Theory," Papers 1207.1029,, revised Apr 2013.
  12. Balduzzi, Pierluigi & Lynch, Anthony W., 1999. "Transaction costs and predictability: some utility cost calculations," Journal of Financial Economics, Elsevier, vol. 52(1), pages 47-78, April.
  13. Zhu, Min, 2013. "Return distribution predictability and its implications for portfolio selection," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 209-223.
  14. Nicholas Barberis, 2000. "Investing for the Long Run when Returns Are Predictable," Journal of Finance, American Finance Association, vol. 55(1), pages 225-264, 02.
  15. Yu, Mei & Takahashi, Satoru & Inoue, Hiroshi & Wang, Shouyang, 2010. "Dynamic portfolio optimization with risk control for absolute deviation model," European Journal of Operational Research, Elsevier, vol. 201(2), pages 349-364, March.
  16. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
  17. Duan Li & Wan-Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean-Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406.
  18. Michael W. Brandt & Pedro Santa-Clara, 2006. "Dynamic Portfolio Selection by Augmentingthe Asset Space," Journal of Finance, American Finance Association, vol. 61(5), pages 2187-2217, October.
  19. Soyer, Refik & Tanyeri, Kadir, 2006. "Bayesian portfolio selection with multi-variate random variance models," European Journal of Operational Research, Elsevier, vol. 171(3), pages 977-990, June.
  20. Elton, Edwin J & Gruber, Martin J, 1974. "On the Optimality of Some Multiperiod Portfolio Selection Criteria," The Journal of Business, University of Chicago Press, vol. 47(2), pages 231-43, April.
  21. Leippold, Markus & Trojani, Fabio & Vanini, Paolo, 2004. "A geometric approach to multiperiod mean variance optimization of assets and liabilities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1079-1113, March.
  22. Hong Liu, 2004. "Optimal Consumption and Investment with Transaction Costs and Multiple Risky Assets," Journal of Finance, American Finance Association, vol. 59(1), pages 289-338, 02.
  23. Lynch, Anthony W. & Tan, Sinan, 2010. "Multiple Risky Assets, Transaction Costs, and Return Predictability: Allocation Rules and Implications for U.S. Investors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(04), pages 1015-1053, August.
  24. Samuelson, Paul A, 1969. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 239-46, August.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:arx:papers:1207.1037. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.