IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms

  • Victor DeMiguel

    ()

    (London Business School, London NW1 4SA, United Kingdom)

  • Lorenzo Garlappi

    ()

    (McCombs School of Business, University of Texas at Austin, Austin, Texas 78712)

  • Francisco J. Nogales

    ()

    (Universidad Carlos III de Madrid, 28911 Leganes, Madrid, Spain)

  • Raman Uppal

    ()

    (London Business School, London NW1 4SA, United Kingdom)

We provide a general framework for finding portfolios that perform well out-of-sample in the presence of estimation error. This framework relies on solving the traditional minimum-variance problem but subject to the additional constraint that the norm of the portfolio-weight vector be smaller than a given threshold. We show that our framework nests as special cases the shrinkage approaches of Jagannathan and Ma (Jagannathan, R., T. Ma. 2003. Risk reduction in large portfolios: Why imposing the wrong constraints helps. J. Finance 58 1651-1684) and Ledoit and Wolf (Ledoit, O., M. Wolf. 2003. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. J. Empirical Finance 10 603-621, and Ledoit, O., M. Wolf. 2004. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivariate Anal. 88 365-411) and the 1/N portfolio studied in DeMiguel et al. (DeMiguel, V., L. Garlappi, R. Uppal. 2009. Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? Rev. Financial Stud. 22 1915-1953). We also use our framework to propose several new portfolio strategies. For the proposed portfolios, we provide a moment-shrinkage interpretation and a Bayesian interpretation where the investor has a prior belief on portfolio weights rather than on moments of asset returns. Finally, we compare empirically the out-of-sample performance of the new portfolios we propose to 10 strategies in the literature across five data sets. We find that the norm-constrained portfolios often have a higher Sharpe ratio than the portfolio strategies in Jagannathan and Ma (2003), Ledoit and Wolf (2003, 2004), the 1/N portfolio, and other strategies in the literature, such as factor portfolios.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://dx.doi.org/10.1287/mnsc.1080.0986
Download Restriction: no

Article provided by INFORMS in its journal Management Science.

Volume (Year): 55 (2009)
Issue (Month): 5 (May)
Pages: 798-812

as
in new window

Handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:798-812
Contact details of provider: Postal:
7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

Phone: +1-443-757-3500
Fax: 443-757-3515
Web page: http://www.informs.org/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-42.
  2. Michael W. Brandt, 1999. "Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach," Journal of Finance, American Finance Association, vol. 54(5), pages 1609-1645, October.
  3. Green, R.C. & Hollifield, B., 1990. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," GSIA Working Papers 1990-12, Carnegie Mellon University, Tepper School of Business.
  4. Frost, Peter A. & Savarino, James E., 1986. "An Empirical Bayes Approach to Efficient Portfolio Selection," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 293-305, September.
  5. Jorion, Philippe, 1991. "Bayesian and CAPM estimators of the means: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 15(3), pages 717-727, June.
  6. Elton, Edwin J & Gruber, Martin J, 1973. "Estimating the Dependence Structure of Share Prices-Implications for Portfolio Selection," Journal of Finance, American Finance Association, vol. 28(5), pages 1203-32, December.
  7. Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de Estadística.
  8. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
  9. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
  10. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, 08.
  11. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-74.
  12. Mark Britten-Jones, 1999. "The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, 04.
  13. Jorion, Philippe, 1985. "International Portfolio Diversification with Estimation Risk," The Journal of Business, University of Chicago Press, vol. 58(3), pages 259-78, July.
  14. Oliver Ledoit & Michael Wolf, 2008. "Robust Performance Hypothesis Testing with the Sharpe Ratio," IEW - Working Papers 320, Institute for Empirical Research in Economics - University of Zurich.
  15. Fama, Eugene F & French, Kenneth R, 1992. " The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-65, June.
  16. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(03), pages 279-292, September.
  17. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
  18. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
  19. Park, Trevor & Casella, George, 2008. "The Bayesian Lasso," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 681-686, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:5:p:798-812. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.