IDEAS home Printed from
   My bibliography  Save this article

A jackknife-type estimator for portfolio revision


  • Füss, Roland
  • Miebs, Felix
  • Trübenbach, Fabian


This article proposes a novel approach to portfolio revision. The current literature on portfolio optimization uses a somewhat naïve approach, where portfolio weights are always completely revised after a predefined fixed period. However, one shortcoming of this procedure is that it ignores parameter uncertainty in the estimated portfolio weights, as well as the biasedness of the in-sample portfolio mean and variance as estimates of the expected portfolio return and out-of-sample variance. To rectify this problem, we propose a jackknife procedure to determine the optimal revision intensity, i.e. the percent of wealth that should be shifted to the new, in-sample optimal portfolio. We find that our approach leads to highly stable portfolio allocations over time, and can significantly reduce the turnover of several well established portfolio strategies. Moreover, the observed turnover reductions lead to statistically and economically significant performance gains in the presence of transaction costs.

Suggested Citation

  • Füss, Roland & Miebs, Felix & Trübenbach, Fabian, 2014. "A jackknife-type estimator for portfolio revision," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 14-28.
  • Handle: RePEc:eee:jbfina:v:43:y:2014:i:c:p:14-28 DOI: 10.1016/j.jbankfin.2014.01.029

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    2. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    3. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    4. Jules H. Kamin, 1975. "Optimal Portfolio Revision with a Proportional Transaction Cost," Management Science, INFORMS, vol. 21(11), pages 1263-1271, July.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Sharpe, William F., 1967. "Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 2(02), pages 76-84, June.
    7. Leland, Hayne E., 1999. "Optimal Portfolio Management with Transactions Costs and Capital Gains Taxes," Research Program in Finance, Working Paper Series qt0fw6k0hm, Research Program in Finance, Institute for Business and Economic Research, UC Berkeley.
    8. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    9. Green, Richard C & Hollifield, Burton, 1992. " When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    10. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    11. Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
    12. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    13. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    14. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    15. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    16. Gopal K. Basak & Ravi Jagannathan & Tongshu Ma, 2009. "Jackknife Estimator for Tracking Error Variance of Optimal Portfolios," Management Science, INFORMS, vol. 55(6), pages 990-1002, June.
    17. Vijay K. Chopra & Chris R. Hensel & Andrew L. Turner, 1993. "Massaging Mean-Variance Inputs: Returns from Alternative Global Investment Strategies in the 1980s," Management Science, INFORMS, vol. 39(7), pages 845-855, July.
    18. Michael W. Brandt & Pedro Santa-Clara & Rossen Valkanov, 2009. "Parametric Portfolio Policies: Exploiting Characteristics in the Cross-Section of Equity Returns," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3411-3447, September.
    19. MacLean, Leonard & Zhao, Yonggan & Ziemba, William, 2006. "Dynamic portfolio selection with process control," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 317-339, February.
    20. Joel Hasbrouck, 2009. "Trading Costs and Returns for U.S. Equities: Estimating Effective Costs from Daily Data," Journal of Finance, American Finance Association, vol. 64(3), pages 1445-1477, June.
    21. Gaivoronski, Alexei A. & Stella, Fabio, 2003. "On-line portfolio selection using stochastic programming," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1013-1043, April.
    22. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(03), pages 621-656, September.
    23. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    24. Keim, Donald B. & Madhavan, Ananth, 1997. "Transactions costs and investment style: an inter-exchange analysis of institutional equity trades," Journal of Financial Economics, Elsevier, vol. 46(3), pages 265-292, December.
    25. Andrew F. Siegel & Artemiza Woodgate, 2007. "Performance of Portfolios Optimized with Estimation Error," Management Science, INFORMS, vol. 53(6), pages 1005-1015, June.
    26. Chen, Andrew H Y & Jen, Frank C & Zionts, Stanley, 1971. "The Optimal Portfolio Revision Policy," The Journal of Business, University of Chicago Press, vol. 44(1), pages 51-61, January.
    27. Gaivoronski, Alexei A. & Krylov, Sergiy & van der Wijst, Nico, 2005. "Optimal portfolio selection and dynamic benchmark tracking," European Journal of Operational Research, Elsevier, vol. 163(1), pages 115-131, May.
    28. Golosnoy, Vasyl & Ragulin, Sergiy & Schmid, Wolfgang, 2011. "CUSUM control charts for monitoring optimal portfolio weights," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2991-3009, November.
    29. Kirby, Chris & Ostdiek, Barbara, 2012. "It’s All in the Timing: Simple Active Portfolio Strategies that Outperform Naïve Diversification," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 47(02), pages 437-467, June.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Portfolio optimization; Optimal portfolio revision; Out-of-sample performance evaluation; Jackknife estimator; Transaction costs;

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:43:y:2014:i:c:p:14-28. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.