IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01385835.html

Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios

Author

Listed:
  • Bertrand Candelon
  • Christophe Hurlin

  • Sessi Tokpavi

    (EconomiX - EconomiX - UPN - Université Paris Nanterre - CNRS - Centre National de la Recherche Scientifique)

Abstract

Shrinkage estimators of the covariance matrix are known to improve the stability over time of the Global Minimum Variance Portfolio (GMVP), as they are less error-prone. However, the improvement over the empirical covariance matrix is not optimal for small values of n, the estimation sample size. For typical asset allocation problems, with n small, this paper aims at. proposing a new method to further reduce sampling error by shrinking once again traditional shrinkage estimators of the GMVP. First, we show analytically that the weights of any GMVP can be shrunk - within the framework of the ridge regression - towards the ones of the equally-weighted portfolio in order to reduce sampling error. Second, Monte Carlo simulations and empirical applications show that applying our methodology to the GMVP based on shrinkage estimators of the covariance matrix, leads to more stable portfolio weights, sharp decreases in portfolio turnovers, and often statistically lower (resp. higher) out-of-sample variances (resp. Sharpe ratios). These results illustrate that double shrinkage estimation of the GMVP can be beneficial for realistic small estimation sample sizes.

Suggested Citation

  • Bertrand Candelon & Christophe Hurlin & Sessi Tokpavi, 2012. "Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios," Post-Print hal-01385835, HAL.
  • Handle: RePEc:hal:journl:hal-01385835
    DOI: 10.1016/j.jempfin.2012.04.010
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah Perrin & Thierry Roncalli, 2019. "Machine Learning Optimization Algorithms & Portfolio Allocation," Papers 1909.10233, arXiv.org.
    2. Olivier Ledoit & Michael Wolf, 2018. "Robust performance hypothesis testing with smooth functions of population moments," ECON - Working Papers 305, Department of Economics - University of Zurich.
    3. Hafner, Christian M. & Wang, Linqi, 2024. "Dynamic portfolio selection with sector-specific regularization," Econometrics and Statistics, Elsevier, vol. 32(C), pages 17-33.
    4. Thibault Bourgeron & Edmond Lezmi & Thierry Roncalli, 2019. "Robust Asset Allocation for Robo-Advisors," Papers 1902.07449, arXiv.org.
    5. Bertrand Maillet & Sessi Tokpavi & Benoit Vaucher, 2013. "Minimum Variance Portfolio Optimisation under Parameter Uncertainty: A Robust Control Approach," EconomiX Working Papers 2013-28, University of Paris Nanterre, EconomiX.
    6. Michele Costola & Bertrand Maillet & Zhining Yuan & Xiang Zhang, 2024. "Mean–variance efficient large portfolios: a simple machine learning heuristic technique based on the two-fund separation theorem," Annals of Operations Research, Springer, vol. 334(1), pages 133-155, March.
    7. Fabrizio Cipollini & Giampiero M. Gallo & Alessandro Palandri, 2020. "A dynamic conditional approach to portfolio weights forecasting," Papers 2004.12400, arXiv.org.
    8. Hafner, Christian & Wang, Linqi, 2020. "Dynamic portfolio selection with sector-specific regularization," LIDAM Discussion Papers ISBA 2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    9. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    10. Yuanyuan Zhang & Xiang Li & Sini Guo, 2018. "Portfolio selection problems with Markowitz’s mean–variance framework: a review of literature," Fuzzy Optimization and Decision Making, Springer, vol. 17(2), pages 125-158, June.
    11. Bertrand Maillet & Sessi Tokpavi & Benoit Vaucher, 2013. "Minimum Variance Portfolio Optimisation under Parameter Uncertainty: A Robust Control Approach," Working Papers hal-04141193, HAL.
    12. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    13. Riccardo Riccobello & Giovanni Bonaccolto & Philipp J. Kremer & Piotr Sobczyk & Małgorzata Bogdan & Sandra Paterlini, 2025. "Sparse graphical modelling for global minimum variance portfolio," Computational Management Science, Springer, vol. 22(2), pages 1-32, December.
    14. Ziegelmann, Flávio Augusto & Borges, Bruna & Caldeira, João F., 2015. "Selection of Minimum Variance Portfolio Using Intraday Data: An Empirical Comparison Among Different Realized Measures for BM&FBovespa Data," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 35(1), October.
    15. Yu Li & Yuhan Wu & Shuhua Zhang, 2025. "The Exploratory Multi-Asset Mean-Variance Portfolio Selection using Reinforcement Learning," Papers 2505.07537, arXiv.org.
    16. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    17. Marco Neffelli, 2018. "Target Matrix Estimators in Risk-Based Portfolios," Risks, MDPI, vol. 6(4), pages 1-20, November.
    18. Du, Yilin & He, Wenfeng & Mei, Xiaoling, 2025. "Portfolio optimization with estimation errors—A robust linear regression approach," Journal of Empirical Finance, Elsevier, vol. 82(C).
    19. Lassance, Nathan, 2021. "Maximizing the Out-of-Sample Sharpe Ratio," LIDAM Discussion Papers LFIN 2021013, Université catholique de Louvain, Louvain Finance (LFIN).

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01385835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.