IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v244y2015i1p289-299.html
   My bibliography  Save this article

Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach

Author

Listed:
  • Maillet, Bertrand
  • Tokpavi, Sessi
  • Vaucher, Benoit

Abstract

The global minimum variance portfolio computed using the sample covariance matrix is known to be negatively affected by parameter uncertainty, an important component of model risk. Using a robust approach, we introduce a portfolio rule for investors who wish to invest in the global minimum variance portfolio due to its strong historical track record, but seek a rule that is robust to parameter uncertainty. Our robust portfolio corresponds theoretically to the global minimum variance portfolio in the worst-case scenario, with respect to a set of plausible alternative estimators of the covariance matrix, in the neighbourhood of the sample covariance matrix. Hence, it provides protection against errors in the reference sample covariance matrix. Monte Carlo simulations illustrate the dominance of the robust portfolio over its non-robust counterpart, in terms of portfolio stability, variance and risk-adjusted returns. Empirically, we compare the out-of-sample performance of the robust portfolio to various competing minimum variance portfolio rules in the literature. We observe that the robust portfolio often has lower turnover and variance and higher Sharpe ratios than the competing minimum variance portfolios.

Suggested Citation

  • Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
  • Handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:289-299 DOI: 10.1016/j.ejor.2015.01.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000302
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Epstein, Larry G. & Miao, Jianjun, 2003. "A two-person dynamic equilibrium under ambiguity," Journal of Economic Dynamics and Control, Elsevier, vol. 27(7), pages 1253-1288, May.
    2. Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
    3. Johnstone, Iain M. & Lu, Arthur Yu, 2009. "On Consistency and Sparsity for Principal Components Analysis in High Dimensions," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 682-693.
    4. Danielsson, Jon & James, Kevin R. & Valenzuela, Marcela & Zer, Ilknur, 2016. "Model risk of risk models," Journal of Financial Stability, Elsevier, vol. 23(C), pages 79-91.
    5. Ang, Andrew & Hodrick, Robert J. & Xing, Yuhang & Zhang, Xiaoyan, 2009. "High idiosyncratic volatility and low returns: International and further U.S. evidence," Journal of Financial Economics, Elsevier, vol. 91(1), pages 1-23, January.
    6. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    7. Zengjing Chen & Larry Epstein, 2002. "Ambiguity, Risk, and Asset Returns in Continuous Time," Econometrica, Econometric Society, vol. 70(4), pages 1403-1443, July.
    8. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    9. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, pages 603-621.
    10. Lorenzo Garlappi & Raman Uppal & Tan Wang, 2007. "Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach," Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 41-81, January.
    11. Thomas J. Sargent & LarsPeter Hansen, 2001. "Robust Control and Model Uncertainty," American Economic Review, American Economic Association, vol. 91(2), pages 60-66, May.
    12. Ledoit, Oliver & Wolf, Michael, 2008. "Robust performance hypothesis testing with the Sharpe ratio," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 850-859, December.
    13. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    14. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross-Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    15. Larry G. Epstein & Martin Schneider, 2007. "Learning Under Ambiguity," Review of Economic Studies, Oxford University Press, vol. 74(4), pages 1275-1303.
    16. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    17. MacKinlay, A Craig & Pastor, Lubos, 2000. "Asset Pricing Models: Implications for Expected Returns and Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 13(4), pages 883-916.
    18. Frazzini, Andrea & Pedersen, Lasse Heje, 2014. "Betting against beta," Journal of Financial Economics, Elsevier, pages 1-25.
    19. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    20. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    21. Alexander Kempf & Christoph Memmel, 2006. "Estimating the global Minimum Variance Portfolio," Schmalenbach Business Review (sbr), LMU Munich School of Management, vol. 58(4), pages 332-348, October.
    22. Mark Britten-Jones, 1999. "The Sampling Error in Estimates of Mean-Variance Efficient Portfolio Weights," Journal of Finance, American Finance Association, vol. 54(2), pages 655-671, April.
    23. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    24. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, pages 511-527.
    25. Camerer, Colin & Weber, Martin, 1992. "Recent Developments in Modeling Preferences: Uncertainty and Ambiguity," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 325-370, October.
    26. Evan W. Anderson & Lars Peter Hansen & Thomas J. Sargent, 2003. "A Quartet of Semigroups for Model Specification, Robustness, Prices of Risk, and Model Detection," Journal of the European Economic Association, MIT Press, vol. 1(1), pages 68-123, March.
    27. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    28. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    29. Jianjun Miao, 2009. "Ambiguity, Risk and Portfolio Choice under Incomplete Information," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 257-279, November.
    30. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    31. Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
    32. Blitz, D.C. & van Vliet, P., 2007. "The Volatility Effect: Lower Risk without Lower Return," ERIM Report Series Research in Management ERS-2007-044-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emmanouil Platanakis & Athanasios Sakkas & Charles Sutcliffe, 2017. "Harmful Diversification: Evidence from Alternative Investments," ICMA Centre Discussion Papers in Finance icma-dp2017-09, Henley Business School, Reading University.
    2. Chiu, Wan-Yi & Jiang, Ching-Hai, 2016. "On the weight sign of the global minimum variance portfolio," Finance Research Letters, Elsevier, vol. 19(C), pages 241-246.
    3. Al Janabi, Mazin A.M. & Arreola Hernandez, Jose & Berger, Theo & Nguyen, Duc Khuong, 2017. "Multivariate dependence and portfolio optimization algorithms under illiquid market scenarios," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1121-1131.
    4. repec:eee:ejores:v:262:y:2017:i:3:p:1164-1180 is not listed on IDEAS
    5. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2016. "Good deals and benchmarks in robust portfolio selection," European Journal of Operational Research, Elsevier, vol. 250(2), pages 666-678.
    6. repec:eee:ejores:v:262:y:2017:i:1:p:299-305 is not listed on IDEAS
    7. repec:eee:ecmode:v:64:y:2017:i:c:p:60-71 is not listed on IDEAS

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:244:y:2015:i:1:p:289-299. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.