IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v59y2013i2p376-389.html
   My bibliography  Save this article

Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction

Author

Listed:
  • Xiaoqun Wang

    (Department of Mathematical Sciences, Tsinghua University, 100084 Beijing, China)

  • Ken Seng Tan

    (Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; and China Institute for Actuarial Science, Central University of Finance and Economics, 100081 Beijing, China)

Abstract

Quasi-Monte Carlo (QMC) methods are important numerical tools in the pricing and hedging of complex financial instruments. The effectiveness of QMC methods crucially depends on the discontinuity and the dimension of the problem. This paper shows how the two fundamental limitations can be overcome in some cases. We first study how path-generation methods (PGMs) affect the structure of the discontinuities and what the effect of discontinuities is on the accuracy of QMC methods. The insight is that the discontinuities can be QMC friendly (i.e., aligned with the coordinate axes) or not, depending on the PGM. The PGMs that offer the best performance in QMC methods are those that make the discontinuities QMC friendly. The structure of discontinuities can affect the accuracy of QMC methods more significantly than the effective dimension. This insight motivates us to propose a novel way of handling the discontinuities. The basic idea is to align the discontinuities with the coordinate axes by a judicious design of a method for simulating the underlying processes. Numerical experiments demonstrate that the proposed method leads to dramatic variance reduction in QMC methods for pricing options and for estimating Greeks. It also reduces the effective dimension of the problem. This paper was accepted by Assaf Zeevi, stochastic models and simulation.

Suggested Citation

  • Xiaoqun Wang & Ken Seng Tan, 2013. "Pricing and Hedging with Discontinuous Functions: Quasi-Monte Carlo Methods and Dimension Reduction," Management Science, INFORMS, vol. 59(2), pages 376-389, July.
  • Handle: RePEc:inm:ormnsc:v:59:y:2013:i:2:p:376-389
    DOI: 10.1287/mnsc.1120.1568
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1120.1568
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1120.1568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Athanassios N. Avramidis & Pierre L'Ecuyer, 2006. "Efficient Monte Carlo and Quasi-Monte Carlo Option Pricing Under the Variance Gamma Model," Management Science, INFORMS, vol. 52(12), pages 1930-1944, December.
    2. S. Ninomiya & S. Tezuka, 1996. "Toward real-time pricing of complex financial derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(1), pages 1-20.
    3. Corwin Joy & Phelim P. Boyle & Ken Seng Tan, 1996. "Quasi-Monte Carlo Methods in Numerical Finance," Management Science, INFORMS, vol. 42(6), pages 926-938, June.
    4. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    5. Liu, Ruixue & Owen, Art B., 2006. "Estimating Mean Dimensionality of Analysis of Variance Decompositions," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 712-721, June.
    6. Xing Jin & Allen X. Zhang, 2006. "Reclaiming Quasi-Monte Carlo Efficiency in Portfolio Value-at-Risk Simulation Through Fourier Transform," Management Science, INFORMS, vol. 52(6), pages 925-938, June.
    7. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    8. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 1999. "Asymptotically Optimal Importance Sampling and Stratification for Pricing Path‐Dependent Options," Mathematical Finance, Wiley Blackwell, vol. 9(2), pages 117-152, April.
    9. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    10. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    11. Spassimir H. Paskov & Joseph F. Traub, 1995. "Faster Valuation of Financial Derivatives," Working Papers 95-03-034, Santa Fe Institute.
    12. Pierre L’Ecuyer & Christiane Lemieux, 2002. "Recent Advances in Randomized Quasi-Monte Carlo Methods," International Series in Operations Research & Management Science, in: Moshe Dror & Pierre L’Ecuyer & Ferenc Szidarovszky (ed.), Modeling Uncertainty, chapter 0, pages 419-474, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Walter, 2020. "Sustainable Financial Risk Modelling Fitting the SDGs: Some Reflections," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    2. Ballotta, Laura & Eberlein, Ernst & Schmidt, Thorsten & Zeineddine, Raghid, 2021. "Fourier based methods for the management of complex life insurance products," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 320-341.
    3. Borgonovo, Emanuele & Rabitti, Giovanni, 2023. "Screening: From tornado diagrams to effective dimensions," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1200-1211.
    4. Fusai, Gianluca & Germano, Guido & Marazzina, Daniele, 2016. "Spitzer identity, Wiener-Hopf factorization and pricing of discretely monitored exotic options," European Journal of Operational Research, Elsevier, vol. 251(1), pages 124-134.
    5. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    6. Harase Shin, 2019. "Comparison of Sobol’ sequences in financial applications," Monte Carlo Methods and Applications, De Gruyter, vol. 25(1), pages 61-74, March.
    7. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    8. Zhang, Dongqing & Wallace, Stein W. & Guo, Zhaoxia & Dong, Yucheng & Kaut, Michal, 2021. "On scenario construction for stochastic shortest path problems in real road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Chao Yu & Xiaoqun Wang, 2023. "Quasi-Monte Carlo-Based Conditional Malliavin Method for Continuous-Time Asian Option Greeks," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 325-360, June.
    10. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    11. Detemple, Jérôme & Laminou Abdou, Souleymane & Moraux, Franck, 2020. "American step options," European Journal of Operational Research, Elsevier, vol. 282(1), pages 363-385.
    12. Ye Xiao & Xiaoqun Wang, 2019. "Enhancing Quasi-Monte Carlo Simulation by Minimizing Effective Dimension for Derivative Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 343-366, June.
    13. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    14. Zhijian He & Xiaoqun Wang, 2021. "An Integrated Quasi-Monte Carlo Method for Handling High Dimensional Problems with Discontinuities in Financial Engineering," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 693-718, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqun Wang & Ian H. Sloan, 2011. "Quasi-Monte Carlo Methods in Financial Engineering: An Equivalence Principle and Dimension Reduction," Operations Research, INFORMS, vol. 59(1), pages 80-95, February.
    2. Okten, Giray & Eastman, Warren, 2004. "Randomized quasi-Monte Carlo methods in pricing securities," Journal of Economic Dynamics and Control, Elsevier, vol. 28(12), pages 2399-2426, December.
    3. Fredrik Åkesson & John P. Lehoczky, 2000. "Path Generation for Quasi-Monte Carlo Simulation of Mortgage-Backed Securities," Management Science, INFORMS, vol. 46(9), pages 1171-1187, September.
    4. Yu-Ying Tzeng & Paul M. Beaumont & Giray Ökten, 2018. "Time Series Simulation with Randomized Quasi-Monte Carlo Methods: An Application to Value at Risk and Expected Shortfall," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 55-77, June.
    5. Xiaoqun Wang, 2016. "Handling Discontinuities in Financial Engineering: Good Path Simulation and Smoothing," Operations Research, INFORMS, vol. 64(2), pages 297-314, April.
    6. Tan, Ken Seng & Boyle, Phelim P., 2000. "Applications of randomized low discrepancy sequences to the valuation of complex securities," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1747-1782, October.
    7. Phelim P. Boyle & Adam W. Kolkiewicz & Ken Seng Tan, 2013. "Pricing Bermudan options using low-discrepancy mesh methods," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 841-860, May.
    8. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    9. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    10. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    11. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    12. Dingeç, Kemal Dinçer & Hörmann, Wolfgang, 2013. "Control variates and conditional Monte Carlo for basket and Asian options," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 421-434.
    13. John Board & Charles Sutcliffe & William T. Ziemba, 2003. "Applying Operations Research Techniques to Financial Markets," Interfaces, INFORMS, vol. 33(2), pages 12-24, April.
    14. Sak, Halis & Başoğlu, İsmail, 2017. "Efficient randomized quasi-Monte Carlo methods for portfolio market risk," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 87-94.
    15. Hatem Ben-Ameur & Michèle Breton & Pierre L'Ecuyer, 2002. "A Dynamic Programming Procedure for Pricing American-Style Asian Options," Management Science, INFORMS, vol. 48(5), pages 625-643, May.
    16. Boyle, Phelim & Imai, Junichi & Tan, Ken Seng, 2008. "Computation of optimal portfolios using simulation-based dimension reduction," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 327-338, December.
    17. Jan Baldeaux & Dale Roberts, 2012. "Quasi-Monte Carlo methods for the Heston model," Papers 1202.3217, arXiv.org, revised May 2012.
    18. Broadie, Mark & Glasserman, Paul, 1997. "Pricing American-style securities using simulation," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1323-1352, June.
    19. Ye Xiao & Xiaoqun Wang, 2019. "Enhancing Quasi-Monte Carlo Simulation by Minimizing Effective Dimension for Derivative Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 54(1), pages 343-366, June.
    20. Lu, King-Jeng & Liang, Chiung-Ju & Hsieh, Ming-Hua & Lee, Yi-Hsi, 2020. "An effective hybrid variance reduction method for pricing the Asian options and its variants," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:59:y:2013:i:2:p:376-389. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.