IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i12p2019-2027.html
   My bibliography  Save this article

Conditional Monte Carlo Estimation of Quantile Sensitivities

Author

Listed:
  • Michael C. Fu

    (Robert H. Smith School of Business and Institute for Systems Research, University of Maryland, College Park, Maryland 20742)

  • L. Jeff Hong

    (Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China)

  • Jian-Qiang Hu

    (Department of Management Science, School of Management, Fudan University, 200433 Shanghai, China)

Abstract

Estimating quantile sensitivities is important in many optimization applications, from hedging in financial engineering to service-level constraints in inventory control to more general chance constraints in stochastic programming. Recently, Hong (Hong, L. J. 2009. Estimating quantile sensitivities. Oper. Res. 57 118-130) derived a batched infinitesimal perturbation analysis estimator for quantile sensitivities, and Liu and Hong (Liu, G., L. J. Hong. 2009. Kernel estimation of quantile sensitivities. Naval Res. Logist. 56 511-525) derived a kernel estimator. Both of these estimators are consistent with convergence rates bounded by n -1/3 and n -2/5 , respectively. In this paper, we use conditional Monte Carlo to derive a consistent quantile sensitivity estimator that improves upon these convergence rates and requires no batching or binning. We illustrate the new estimator using a simple but realistic portfolio credit risk example, for which the previous work is inapplicable.

Suggested Citation

  • Michael C. Fu & L. Jeff Hong & Jian-Qiang Hu, 2009. "Conditional Monte Carlo Estimation of Quantile Sensitivities," Management Science, INFORMS, vol. 55(12), pages 2019-2027, December.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:12:p:2019-2027
    DOI: 10.1287/mnsc.1090.1090
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1090.1090
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1090.1090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. L. Jeff Hong, 2009. "Estimating Quantile Sensitivities," Operations Research, INFORMS, vol. 57(1), pages 118-130, February.
    2. L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
    3. Achal Bassamboo & Sandeep Juneja & Assaf Zeevi, 2008. "Portfolio Credit Risk with Extremal Dependence: Asymptotic Analysis and Efficient Simulation," Operations Research, INFORMS, vol. 56(3), pages 593-606, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Jeff Hong & Sandeep Juneja & Jun Luo, 2014. "Estimating Sensitivities of Portfolio Credit Risk Using Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 848-865, November.
    2. Silvana M. Pesenti & Pietro Millossovich & Andreas Tsanakas, 2023. "Differential Quantile-Based Sensitivity in Discontinuous Models," Papers 2310.06151, arXiv.org, revised Oct 2024.
    3. Guangxin Jiang & Michael C. Fu, 2015. "Technical Note—On Estimating Quantile Sensitivities via Infinitesimal Perturbation Analysis," Operations Research, INFORMS, vol. 63(2), pages 435-441, April.
    4. Bernd Heidergott & Warren Volk-Makarewicz, 2016. "A Measure-Valued Differentiation Approach to Sensitivities of Quantiles," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 293-317, February.
    5. Kellner, Ralf & Rösch, Daniel, 2016. "Quantifying market risk with Value-at-Risk or Expected Shortfall? – Consequences for capital requirements and model risk," Journal of Economic Dynamics and Control, Elsevier, vol. 68(C), pages 45-63.
    6. Pesenti, Silvana M. & Tsanakas, Andreas & Millossovich, Pietro, 2018. "Euler allocations in the presence of non-linear reinsurance: Comment on Major (2018)," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 29-31.
    7. Xi Chen & Kyoung-Kuk Kim, 2016. "Efficient VaR and CVaR Measurement via Stochastic Kriging," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 629-644, November.
    8. Huang, Zhenzhen & Kwok, Yue Kuen & Xu, Ziqing, 2024. "Efficient algorithms for calculating risk measures and risk contributions in copula credit risk models," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 132-150.
    9. Yijie Peng & Michael C. Fu & Bernd Heidergott & Henry Lam, 2020. "Maximum Likelihood Estimation by Monte Carlo Simulation: Toward Data-Driven Stochastic Modeling," Operations Research, INFORMS, vol. 68(6), pages 1896-1912, November.
    10. Peter W. Glynn & Yijie Peng & Michael C. Fu & Jian-Qiang Hu, 2021. "Computing Sensitivities for Distortion Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1520-1532, October.
    11. L. Jeff Hong & Yi Yang & Liwei Zhang, 2011. "Sequential Convex Approximations to Joint Chance Constrained Programs: A Monte Carlo Approach," Operations Research, INFORMS, vol. 59(3), pages 617-630, June.
    12. Guangwu Liu, 2015. "Simulating Risk Contributions of Credit Portfolios," Operations Research, INFORMS, vol. 63(1), pages 104-121, February.
    13. He, Zhijian, 2022. "Sensitivity estimation of conditional value at risk using randomized quasi-Monte Carlo," European Journal of Operational Research, Elsevier, vol. 298(1), pages 229-242.
    14. Yijie Peng & Chun-Hung Chen & Michael C. Fu & Jian-Qiang Hu & Ilya O. Ryzhov, 2021. "Efficient Sampling Allocation Procedures for Optimal Quantile Selection," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 230-245, January.
    15. Gerardo Manzo & Antonio Picca, 2020. "The Impact of Sovereign Shocks," Management Science, INFORMS, vol. 66(7), pages 3113-3132, July.
    16. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    17. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    18. İsmail Başoğlu & Wolfgang Hörmann & Halis Sak, 2018. "Efficient simulations for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 260(1), pages 113-128, January.
    19. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019. "How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248, Emerald Group Publishing Limited.
    20. Begen, Mehmet A. & Pun, Hubert & Yan, Xinghao, 2016. "Supply and demand uncertainty reduction efforts and cost comparison," International Journal of Production Economics, Elsevier, vol. 180(C), pages 125-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:12:p:2019-2027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.