IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v55y2009i2p281-293.html
   My bibliography  Save this article

Simulating Sensitivities of Conditional Value at Risk

Author

Listed:
  • L. Jeff Hong

    (Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Guangwu Liu

    (Department of Industrial Engineering and Logistics Management, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

Abstract

Conditional value at risk (CVaR) is both a coherent risk measure and a natural risk statistic. It is often used to measure the risk associated with large losses. In this paper, we study how to estimate the sensitivities of CVaR using Monte Carlo simulation. We first prove that the CVaR sensitivity can be written as a conditional expectation for general loss distributions. We then propose an estimator of the CVaR sensitivity and analyze its asymptotic properties. The numerical results show that the estimator works well. Furthermore, we demonstrate how to use the estimator to solve optimization problems with CVaR objective and/or constraints, and compare it to a popular linear programming-based algorithm.

Suggested Citation

  • L. Jeff Hong & Guangwu Liu, 2009. "Simulating Sensitivities of Conditional Value at Risk," Management Science, INFORMS, vol. 55(2), pages 281-293, February.
  • Handle: RePEc:inm:ormnsc:v:55:y:2009:i:2:p:281-293
    DOI: 10.1287/mnsc.1080.0901
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1080.0901
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1080.0901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Trindade, A. Alexandre & Uryasev, Stan & Shapiro, Alexander & Zrazhevsky, Grigory, 2007. "Financial prediction with constrained tail risk," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3524-3538, November.
    2. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    3. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    4. Mark Broadie & Paul Glasserman, 1996. "Estimating Security Price Derivatives Using Simulation," Management Science, INFORMS, vol. 42(2), pages 269-285, February.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    2. R. Tyrrell Rockafellar & Stan Uryasev & Michael Zabarankin, 2008. "Risk Tuning with Generalized Linear Regression," Mathematics of Operations Research, INFORMS, vol. 33(3), pages 712-729, August.
    3. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    4. Ahmadi-Javid, Amir & Seddighi, Amir Hossein, 2013. "A location-routing problem with disruption risk," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 63-82.
    5. R. Tyrrell Rockafellar & Johannes O. Royset, 2018. "Superquantile/CVaR risk measures: second-order theory," Annals of Operations Research, Springer, vol. 262(1), pages 3-28, March.
    6. Helin Zhu & Joshua Hale & Enlu Zhou, 2018. "Simulation optimization of risk measures with adaptive risk levels," Journal of Global Optimization, Springer, vol. 70(4), pages 783-809, April.
    7. Ahmadi-Javid, Amir & Fallah-Tafti, Malihe, 2019. "Portfolio optimization with entropic value-at-risk," European Journal of Operational Research, Elsevier, vol. 279(1), pages 225-241.
    8. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    9. Mahmutoğulları, Ali İrfan & Çavuş, Özlem & Aktürk, M. Selim, 2018. "Bounds on risk-averse mixed-integer multi-stage stochastic programming problems with mean-CVaR," European Journal of Operational Research, Elsevier, vol. 266(2), pages 595-608.
    10. L. Jeff Hong & Zhaolin Hu & Liwei Zhang, 2014. "Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 385-400, May.
    11. Martin Herdegen & Nazem Khan, 2022. "$\rho$-arbitrage and $\rho$-consistent pricing for star-shaped risk measures," Papers 2202.07610, arXiv.org, revised May 2024.
    12. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2015. "Portfolio Optimization with Quasiconvex Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 1042-1059, October.
    13. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
    14. Dimitris Bertsimas & Akiko Takeda, 2015. "Optimizing over coherent risk measures and non-convexities: a robust mixed integer optimization approach," Computational Optimization and Applications, Springer, vol. 62(3), pages 613-639, December.
    15. Eskandarzadeh, Saman & Eshghi, Kourosh, 2013. "Decision tree analysis for a risk averse decision maker: CVaR Criterion," European Journal of Operational Research, Elsevier, vol. 231(1), pages 131-140.
    16. Radu Boţ & Alina-Ramona Frătean, 2011. "Looking for appropriate qualification conditions for subdifferential formulae and dual representations for convex risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(2), pages 191-215, October.
    17. Darinka Dentcheva & Spiridon Penev & Andrzej Ruszczyński, 2017. "Statistical estimation of composite risk functionals and risk optimization problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(4), pages 737-760, August.
    18. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    19. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    20. Maciej Rysz & Alexander Vinel & Pavlo Krokhmal & Eduardo L. Pasiliao, 2015. "A Scenario Decomposition Algorithm for Stochastic Programming Problems with a Class of Downside Risk Measures," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 416-430, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:55:y:2009:i:2:p:281-293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.