IDEAS home Printed from
   My bibliography  Save this paper

Multivariate Elliptical Truncated Moments


  • Juan Arismendi

    (ICMA Centre, Henley Business School, University of Reading)

  • Simon Broda

    (Department of Quantitative Economics, University of Amsterdam Tinbergen Institute Amsterdam)


In this study, we derived analytic expressions for the elliptical truncated moment generating function (MGF), the zeroth-, first-, and second-order moments of quadratic forms of the multivariate normal, Student's t, and generalised hyperbolic distributions. The resulting formulae were tested in a numerical application to calculate an analytic expression of the expected shortfall of quadratic portfolios with the benefit that moment based sensitivity measures can be derived from the analytic expression. The convergence rate of the analytic expression is fast { one iteration { for small closed integration domains, and slower for open integration domains when compared to the Monte Carlo integration method. The analytic formulae provide a theoretical framework for calculations in robust estimation, robust regression, outlier detection, design of experiments, and stochastic extensions of deterministic elliptical curves results.

Suggested Citation

  • Juan Arismendi & Simon Broda, 2016. "Multivariate Elliptical Truncated Moments," ICMA Centre Discussion Papers in Finance icma-dp2016-06, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2016-06

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    2. Eberlein, Ernst & Keller, Ulrich & Prause, Karsten, 1998. "New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model," The Journal of Business, University of Chicago Press, vol. 71(3), pages 371-405, July.
    3. Salem, A B Z & Mount, T D, 1974. "A Convenient Descriptive Model of Income Distribution: The Gamma Density," Econometrica, Econometric Society, vol. 42(6), pages 1115-1127, November.
    4. Marco Riani & Anthony C. Atkinson & Andrea Cerioli, 2009. "Finding an unknown number of multivariate outliers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 447-466, April.
    5. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin, 2002. "Portfolio Value‐at‐Risk with Heavy‐Tailed Risk Factors," Mathematical Finance, Wiley Blackwell, vol. 12(3), pages 239-269, July.
    6. Jules Sadefo Kamdem, 2005. "Value-At-Risk And Expected Shortfall For Linear Portfolios With Elliptically Distributed Risk Factors," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(05), pages 537-551.
    7. Torti, Francesca & Perrotta, Domenico & Atkinson, Anthony C. & Riani, Marco, 2012. "Benchmark testing of algorithms for very robust regression: FS, LMS and LTS," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2501-2512.
    8. Jules SADEFO KAMDEM, 2004. "Value-at-Risk and Expected Shortfall for Quadratic Portfolio of Securities with Mixture of Elliptic Distribution Risk Factors," Computing in Economics and Finance 2004 12, Society for Computational Economics.
    9. Klar, Bernhard, 2002. "A Treatment of Multivariate Skewness, Kurtosis, and Related Statistics," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 141-165, October.
    10. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    11. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    12. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    13. Simon A. Broda, 2013. "Tail Probabilities and Partial Moments for Quadratic Forms in Multivariate Generalized Hyperbolic Random Vectors," Tinbergen Institute Discussion Papers 13-001/III, Tinbergen Institute.
    14. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    15. David Scott & Diethelm Würtz & Christine Dong & Thanh Tran, 2011. "Moments of the generalized hyperbolic distribution," Computational Statistics, Springer, vol. 26(3), pages 459-476, September.
    16. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    17. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    18. Cerioli, Andrea, 2010. "Multivariate Outlier Detection With High-Breakdown Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 147-156.
    19. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    20. Schmidt, Rafael & Hrycej, Tomas & Stutzle, Eric, 2006. "Multivariate distribution models with generalized hyperbolic margins," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 2065-2096, April.
    21. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    22. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    23. Cerioli, Andrea & Farcomeni, Alessio & Riani, Marco, 2014. "Strong consistency and robustness of the Forward Search estimator of multivariate location and scatter," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 167-183.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ogasawara, Haruhiko, 2021. "A non-recursive formula for various moments of the multivariate normal distribution with sectional truncation," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    2. Ouzan, Samuel, 2020. "Loss aversion and market crashes," Economic Modelling, Elsevier, vol. 92(C), pages 70-86.
    3. Roozegar, Roohollah & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2020. "On moments of doubly truncated multivariate normal mean–variance mixture distributions with application to multivariate tail conditional expectation," Journal of Multivariate Analysis, Elsevier, vol. 177(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    2. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    3. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    4. Paolella, Marc S. & Polak, Paweł, 2015. "COMFORT: A common market factor non-Gaussian returns model," Journal of Econometrics, Elsevier, vol. 187(2), pages 593-605.
    5. H. Fink & S. Geissel & J. Sass & F. T. Seifried, 2019. "Implied risk aversion: an alternative rating system for retail structured products," Review of Derivatives Research, Springer, vol. 22(3), pages 357-387, October.
    6. Karma, Otto & Sander, Priit, 2006. "The impact of financial leverage on risk of equity measured by loss-oriented risk measures: An option pricing approach," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1340-1356, December.
    7. Huang, Jinbo & Ding, Ashley & Li, Yong & Lu, Dong, 2020. "Increasing the risk management effectiveness from higher accuracy: A novel non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 62(C).
    8. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, Open Access Journal, vol. 3(4), pages 1-25, December.
    11. Walter Farkas & Ludovic Mathys & Nikola Vasiljevi'c, 2020. "Intra-Horizon Expected Shortfall and Risk Structure in Models with Jumps," Papers 2002.04675,, revised Jan 2021.
    12. Fu, Tianwen & Zhuang, Xinkai & Hui, Yongchang & Liu, Jia, 2017. "Convex risk measures based on generalized lower deviation and their applications," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 27-37.
    13. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    14. Yu, Jinping & Yang, Xiaofeng & Li, Shenghong, 2009. "Portfolio optimization with CVaR under VG process," Research in International Business and Finance, Elsevier, vol. 23(1), pages 107-116, January.
    15. Grechuk, Bogdan & Zabarankin, Michael, 2018. "Direct data-based decision making under uncertainty," European Journal of Operational Research, Elsevier, vol. 267(1), pages 200-211.
    16. So Yeon Chun & Alexander Shapiro & Stan Uryasev, 2012. "Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics," Operations Research, INFORMS, vol. 60(4), pages 739-756, August.
    17. Dilip B. Madan, 2016. "Conic Portfolio Theory," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 1-42, May.
    18. Dobrislav Dobrev∗ & Travis D. Nesmith & Dong Hwan Oh, 2017. "Accurate Evaluation of Expected Shortfall for Linear Portfolios with Elliptically Distributed Risk Factors," Journal of Risk and Financial Management, MDPI, Open Access Journal, vol. 10(1), pages 1-14, February.
    19. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    20. Bajo, Emanuele & Barbi, Massimiliano & Romagnoli, Silvia, 2014. "Optimal corporate hedging using options with basis and production risk," The North American Journal of Economics and Finance, Elsevier, vol. 30(C), pages 56-71.

    More about this item


    Multivariate truncated moments; Quadratic forms; Elliptical Truncation; Tail moments; Parametric distributions; Elliptical functions;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2016-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.