IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v336y2024i1d10.1007_s10479-023-05396-1.html
   My bibliography  Save this article

Portfolio analysis with mean-CVaR and mean-CVaR-skewness criteria based on mean–variance mixture models

Author

Listed:
  • Nuerxiati Abudurexiti

    (Xi’an Jiaotong Liverpool University)

  • Kai He

    (Xi’an Jiaotong Liverpool University)

  • Dongdong Hu

    (Xi’an Jiaotong Liverpool University)

  • Svetlozar T. Rachev

    (Texas Tech University)

  • Hasanjan Sayit

    (Xi’an Jiaotong Liverpool University)

  • Ruoyu Sun

    (Xi’an Jiaotong Liverpool University)

Abstract

The paper Zhao et al. (Ann Oper Res 226:727–739, 2015) shows that mean-CVaR-skewness portfolio optimization problems based on asymetric Laplace (AL) distributions can be transformed into quadratic optimization problems for which closed form solutions can be found. In this note, we show that such a result also holds for mean-risk-skewness portfolio optimization problems when the underlying distribution belongs to a larger class of normal mean–variance mixture (NMVM) models than the class of AL distributions.We then study the value at risk (VaR) and conditional value at risk (CVaR) risk measures of portfolios of returns with NMVM distributions.They have closed form expressions for portfolios of normal and more generally elliptically distributed returns, as discussed in Rockafellar and Uryasev (J Risk 2:21–42, 2000) and Landsman and Valdez (N Am Actuar J 7:55–71, 2003). When the returns have general NMVM distributions, these risk measures do not give closed form expressions. In this note, we give approximate closed form expressions for the VaR and CVaR of portfolios of returns with NMVM distributions.Numerical tests show that our closed form formulas give accurate values for VaR and CVaR and shorten the computational time for portfolio optimization problems associated with VaR and CVaR considerably.

Suggested Citation

  • Nuerxiati Abudurexiti & Kai He & Dongdong Hu & Svetlozar T. Rachev & Hasanjan Sayit & Ruoyu Sun, 2024. "Portfolio analysis with mean-CVaR and mean-CVaR-skewness criteria based on mean–variance mixture models," Annals of Operations Research, Springer, vol. 336(1), pages 945-966, May.
  • Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05396-1
    DOI: 10.1007/s10479-023-05396-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05396-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05396-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. c{C}au{g}{i}n Ararat, 2020. "Portfolio optimization with two quasiconvex risk measures," Papers 2012.06173, arXiv.org.
    2. Lo, Andrew W. & Mackinlay, A. Craig, 1997. "Maximizing Predictability In The Stock And Bond Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 102-134, January.
    3. Shangmei Zhao & Qing Lu & Liyan Han & Yong Liu & Fei Hu, 2015. "A mean-CVaR-skewness portfolio optimization model based on asymmetric Laplace distribution," Annals of Operations Research, Springer, vol. 226(1), pages 727-739, March.
    4. Turan G. Bali & Nusret Cakici, 2004. "Value at Risk and Expected Stock Returns," Financial Analysts Journal, Taylor & Francis Journals, vol. 60(2), pages 57-73, March.
    5. Alexei Chekhlov & Stanislav Uryasev & Michael Zabarankin, 2005. "Drawdown Measure In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 13-58.
    6. Tim Bollerslev & Viktor Todorov, 2011. "Tails, Fears, and Risk Premia," Journal of Finance, American Finance Association, vol. 66(6), pages 2165-2211, December.
    7. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    8. Kjersti Aas & Ingrid Hobaek Haff, 2006. "The Generalized Hyperbolic Skew Student's t-Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 4(2), pages 275-309.
    9. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    10. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    11. Zinoviy Landsman & Udi Makov, 2016. "Minimization of a Function of a Quadratic Functional with Application to Optimal Portfolio Selection," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 308-322, July.
    12. Owen, Joel & Rabinovitch, Ramon, 1983. "On the Class of Elliptical Distributions and Their Applications to the Theory of Portfolio Choice," Journal of Finance, American Finance Association, vol. 38(3), pages 745-752, June.
    13. Kozubowski, Tomasz J. & Rachev, Svetlozar T., 1994. "The theory of geometric stable distributions and its use in modeling financial data," European Journal of Operational Research, Elsevier, vol. 74(2), pages 310-324, April.
    14. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    15. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    16. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    17. Martin Hellmich & Stefan Kassberger, 2011. "Efficient and robust portfolio optimization in the multivariate Generalized Hyperbolic framework," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1503-1516.
    18. Philippe Jorion, 1996. "Risk2: Measuring the Risk in Value at Risk," Financial Analysts Journal, Taylor & Francis Journals, vol. 52(6), pages 47-56, November.
    19. Tahsin Deniz Aktürk & Çağın Ararat, 2020. "Portfolio optimization with two coherent risk measures," Journal of Global Optimization, Springer, vol. 78(3), pages 597-626, November.
    20. Tahsin Deniz Akturk & c{C}au{g}{i}n Ararat, 2019. "Portfolio optimization with two coherent risk measures," Papers 1903.10454, arXiv.org, revised Jul 2020.
    21. Xiang Shi & Young Shin Kim, 2021. "Coherent Risk Measures And Normal Mixture Distributions With Applications In Portfolio Optimization," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 24(04), pages 1-18, June.
    22. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    23. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    24. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    25. Yannick Malevergne & Didier Sornette, 2006. "Extreme Financial Risks : From Dependence to Risk Management," Post-Print hal-02298069, HAL.
    26. Rose‐Anne Dana, 2005. "A Representation Result For Concave Schur Concave Functions," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 613-634, October.
    27. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuerxiati Abudurexiti & Kai He & Dongdong Hu & Svetlozar T. Rachev & Hasanjan Sayit & Ruoyu Sun, 2021. "Portfolio analysis with mean-CVaR and mean-CVaR-skewness criteria based on mean-variance mixture models," Papers 2111.04311, arXiv.org, revised Feb 2023.
    2. Gabriele Canna & Francesca Centrone & Emanuela Rosazza Gianin, 2021. "Capital Allocation Rules and the No-Undercut Property," Mathematics, MDPI, vol. 9(2), pages 1-13, January.
    3. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    4. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    5. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    6. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partial Law Invariance and Risk Measures," Papers 2401.17265, arXiv.org, revised Dec 2024.
    7. Weiwei Li & Dejian Tian, 2023. "Robust optimized certainty equivalents and quantiles for loss positions with distribution uncertainty," Papers 2304.04396, arXiv.org.
    8. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    9. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    10. Lisa R. Goldberg & Ola Mahmoud, 2014. "Drawdown: From Practice to Theory and Back Again," Papers 1404.7493, arXiv.org, revised Sep 2016.
    11. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    12. Bauerle, Nicole & Muller, Alfred, 2006. "Stochastic orders and risk measures: Consistency and bounds," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 132-148, February.
    13. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    14. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org, revised Aug 2024.
    15. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    16. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    17. Hasanjan Sayit, 2022. "A discussion of stochastic dominance and mean-risk optimal portfolio problems based on mean-variance-mixture models," Papers 2202.02488, arXiv.org, revised Jan 2025.
    18. Yu, Jinping & Yang, Xiaofeng & Li, Shenghong, 2009. "Portfolio optimization with CVaR under VG process," Research in International Business and Finance, Elsevier, vol. 23(1), pages 107-116, January.
    19. Francesca Centrone & Emanuela Rosazza Gianin, 2025. "Capital Allocation Rules and Generalized Collapse to the Mean: Theory and Practice," Mathematics, MDPI, vol. 13(6), pages 1-14, March.
    20. Francesco Cesarone & Manuel L. Martino & Fabio Tardella, 2023. "Mean-Variance-VaR portfolios: MIQP formulation and performance analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(3), pages 1043-1069, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05396-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.