IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v264y2018i2p707-716.html
   My bibliography  Save this article

Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity

Author

Listed:
  • Brandtner, Mario
  • Kürsten, Wolfgang
  • Rischau, Robert

Abstract

We conduct a decision-theoretic analysis of optimal portfolio choices and, in particular, their comparative statics under two types of entropic risk measures, the coherent entropic risk measure (CERM) and the convex entropic risk measure (ERM). Starting with the portfolio selection between a risky and a risk free asset (framework of Arrow (1965) and Pratt (1964)), we find a restrictive all-or-nothing investment decision under the CERM, while the ERM yields diversification. We then address a portfolio problem with two risky assets, and provide comparative statics with respect to the investor’s risk aversion (framework of Ross (1981)). Here, both the CERM and the ERM exhibit closely interrelated inconsistencies with respect to the interpretation of their risk parameters as a measure of risk aversion: for any two investors with different risk parameters, it may happen that the investor with the higher risk parameter invests more in the riskier one of the two assets. Finally, we analyze the portfolio problem “risky vs. risk free” in the presence of an independent background risk, and analyze the effect of changes in this background risk (framework of Gollier and Pratt (1996)). Again, we find questionable predictions: under the CERM, the optimal risky investment is always increasing instead of decreasing when a background risk is introduced, while under the ERM it remains unaffected.

Suggested Citation

  • Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
  • Handle: RePEc:eee:ejores:v:264:y:2018:i:2:p:707-716
    DOI: 10.1016/j.ejor.2017.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717306343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    3. Breuer, Thomas & Csiszár, Imre, 2013. "Systematic stress tests with entropic plausibility constraints," Journal of Banking & Finance, Elsevier, vol. 37(5), pages 1552-1559.
    4. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    5. Hans Föllmer & Thomas Knispel, 2013. "Convex risk measures: Basic facts, law-invariance and beyond, asymptotics for large portfolios," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 30, pages 507-554, World Scientific Publishing Co. Pte. Ltd..
    6. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    7. Rafael Repullo & Javier Suarez, 2008. "The Procyclical Effects of Basel II," Working Papers wp2008_0809, CEMFI.
    8. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    9. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    10. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    11. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    12. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    13. Alexandre Adam & Mohamed Houkari & Jean-Paul Laurent, 2008. "Spectral risk measures and portfolio selection," Post-Print hal-03676385, HAL.
    14. Ross, Stephen A, 1981. "Some Stronger Measures of Risk Aversion in the Small and the Large with Applications," Econometrica, Econometric Society, vol. 49(3), pages 621-638, May.
    15. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    16. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    17. Wagener, Andreas, 2003. "Comparative statics under uncertainty: The case of mean-variance preferences," European Journal of Operational Research, Elsevier, vol. 151(1), pages 224-232, November.
    18. Gerber, Hans U., 1974. "On Additive Premium Calculation Principles," ASTIN Bulletin, Cambridge University Press, vol. 7(3), pages 215-222, March.
    19. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    20. Thomas Breuer & Imre Csiszár, 2016. "Measuring Distribution Model Risk," Mathematical Finance, Wiley Blackwell, vol. 26(2), pages 395-411, April.
    21. Gollier, Christian & Pratt, John W, 1996. "Risk Vulnerability and the Tempering Effect of Background Risk," Econometrica, Econometric Society, vol. 64(5), pages 1109-1123, September.
    22. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    23. Yan, Jun, 2015. "Deviations of convex and coherent entropic risk measures," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 56-66.
    24. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthias Fischer & Thorsten Moser & Marius Pfeuffer, 2018. "A Discussion on Recent Risk Measures with Application to Credit Risk: Calculating Risk Contributions and Identifying Risk Concentrations," Risks, MDPI, vol. 6(4), pages 1-28, December.
    2. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    3. Będowska-Sójka, Barbara & Kliber, Agata, 2021. "Information content of liquidity and volatility measures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    4. J. Arismendi-Zambrano & R. Azevedo, 2020. "Implicit Entropic Market Risk-Premium from Interest Rate Derivatives," Economics Department Working Paper Series n303-20.pdf, Department of Economics, National University of Ireland - Maynooth.
    5. Kirkby, J. Lars & Mitra, Sovan & Nguyen, Duy, 2020. "An analysis of dollar cost averaging and market timing investment strategies," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1168-1186.
    6. Babacar Seck & Robert J. Elliott, 2021. "Regime Switching Entropic Risk Measures on Crude Oil Pricing," Papers 2112.13041, arXiv.org.
    7. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    2. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    3. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    4. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    5. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    6. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    7. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    8. Martin Herdegen & Nazem Khan, 2022. "Mean‐ρ$\rho$ portfolio selection and ρ$\rho$‐arbitrage for coherent risk measures," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 226-272, January.
    9. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    10. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.
    11. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    12. Zhiping Chen & Qianhui Hu, 2018. "On Coherent Risk Measures Induced by Convex Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 673-698, June.
    13. A. Ahmadi-Javid, 2012. "Entropic Value-at-Risk: A New Coherent Risk Measure," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 1105-1123, December.
    14. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    15. Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
    16. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.
    17. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    18. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    19. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.
    20. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:264:y:2018:i:2:p:707-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.