IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v32y2008i12p2667-2673.html
   My bibliography  Save this article

Two-sided coherent risk measures and their application in realistic portfolio optimization

Author

Listed:
  • Chen, Zhiping
  • Wang, Yi

Abstract

By using a different derivation scheme, a new class of two-sided coherent risk measures is constructed in this paper. Different from existing coherent risk measures, both positive and negative deviations from the expected return are considered in the new measure simultaneously but differently. This innovation makes it easy to reasonably describe and control the asymmetry and fat-tail characteristics of the loss distribution and to properly reflect the investor's risk attitude. With its easy computation of the new risk measure, a realistic portfolio selection model is established by taking into account typical market frictions such as taxes, transaction costs, and value constraints. Empirical results demonstrate that our new portfolio selection model can not only suitably reflect the impact of different trading constraints, but find more robust optimal portfolios, which are better than the optimal portfolio obtained under the conditional value-at-risk measure in terms of diversification and typical performance ratios.

Suggested Citation

  • Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
  • Handle: RePEc:eee:jbfina:v:32:y:2008:i:12:p:2667-2673
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(08)00134-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bawa, Vijay S., 1975. "Optimal rules for ordering uncertain prospects," Journal of Financial Economics, Elsevier, vol. 2(1), pages 95-121, March.
    2. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    3. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    4. Farinelli, Simone & Tibiletti, Luisa, 2008. "Sharpe thinking in asset ranking with one-sided measures," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1542-1547, March.
    5. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    6. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    7. Xiaoqiang Cai & Kok-Lay Teo & Xiaoqi Yang & Xun Yu Zhou, 2000. "Portfolio Optimization Under a Minimax Rule," Management Science, INFORMS, vol. 46(7), pages 957-972, July.
    8. Clarke, R & Davies, S W, 1983. "Aggregate Concentration, Market Concentration and Diversification," Economic Journal, Royal Economic Society, vol. 93(369), pages 182-192, March.
    9. Fischer, T., 2003. "Risk capital allocation by coherent risk measures based on one-sided moments," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 135-146, February.
    10. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    11. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    12. repec:wsi:ijtafx:v:11:y:2008:i:01:n:s0219024908004713 is not listed on IDEAS
    13. Dirk Tasche, 2002. "Expected Shortfall and Beyond," Papers cond-mat/0203558, arXiv.org, revised Oct 2002.
    14. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    15. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    16. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    17. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    18. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    19. Rockafellar, R. Tyrrell & Uryasev, Stan & Zabarankin, M., 2007. "Equilibrium with investors using a diversity of deviation measures," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3251-3268, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brandouy, Olivier & Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2010. "Portfolio performance gauging in discrete time using a Luenberger productivity indicator," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1899-1910, August.
    2. Marco Corazza & Giovanni Fasano & Riccardo Gusso, 2011. "Particle Swarm Optimization with non-smooth penalty reformulation for a complex portfolio selection problem," Working Papers 2011_10, Department of Economics, University of Venice "Ca' Foscari".
    3. repec:eee:finana:v:52:y:2017:i:c:p:27-37 is not listed on IDEAS
    4. Marco Corazza & Giacomo Di Tollo & Giovanni Fasano & Raffaele Pesenti, 2015. "A novel initialization of PSO for costly portfolio selection problems," Working Papers 4, Department of Management, Università Ca' Foscari Venezia.
    5. Chen, Zhi-ping & Li, Gang & Guo, Ju-e, 2013. "Optimal investment policy in the time consistent mean–variance formulation," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 145-156.
    6. repec:eee:jmvana:v:157:y:2017:i:c:p:29-44 is not listed on IDEAS
    7. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    8. Yue, Wei & Wang, Yuping, 2017. "A new fuzzy multi-objective higher order moment portfolio selection model for diversified portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 124-140.
    9. Zhiping Chen & Jia Liu & Gang Li & Zhe Yan, 2016. "Composite time-consistent multi-period risk measure and its application in optimal portfolio selection," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 515-540, October.
    10. Arismendi, Juan C. & Broda, Simon, 2017. "Multivariate elliptical truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 157(C), pages 29-44.
    11. You, Leyuan & Daigler, Robert T., 2010. "Is international diversification really beneficial?," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 163-173, January.
    12. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2016. "Good deals and benchmarks in robust portfolio selection," European Journal of Operational Research, Elsevier, vol. 250(2), pages 666-678.
    13. Chen, Zhiping & Yang, Li, 2011. "Nonlinearly weighted convex risk measure and its application," Journal of Banking & Finance, Elsevier, vol. 35(7), pages 1777-1793, July.
    14. Marcelo Brutti Righi, 2015. "A composition between risk and deviation measures," Papers 1511.06943, arXiv.org, revised Oct 2017.
    15. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel, 2010. "CAPM and APT-like models with risk measures," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1166-1174, June.
    16. Jun-ya Gotoh & Akiko Takeda & Rei Yamamoto, 2014. "Interaction between financial risk measures and machine learning methods," Computational Management Science, Springer, vol. 11(4), pages 365-402, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:12:p:2667-2673. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.