IDEAS home Printed from https://ideas.repec.org/a/spr/manrev/v66y2016i2d10.1007_s11301-015-0116-1.html
   My bibliography  Save this article

Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke

Author

Listed:
  • Mario Brandtner

    (Friedrich-Schiller-Universität Jena)

Abstract

Zusammenfassung Der Beitrag behandelt Probleme und Anwendungspotenziale bei der Übertragung der originär regulatorisch geprägten spektralen Risikomaße, einschließlich des Conditional Value-at-Risk als ihrem prominentesten Vertreter, in den Kontext betriebswirtschaftlicher Entscheidungsprobleme. Dabei werden zwei Grundformen von restriktiven, und ökonomisch unplausiblen, Randlösungstendenzen oder ,,Plunging“ offengelegt. Die erste Form von Randlösungen wird unmittelbar durch die regulatorische Axiomatik induziert und ist allen spektralen Risikomaßen inhärent. Sie bewirkt etwa, dass bei der optimalen Vermögensaufteilung zwischen einer risikofreien und einer riskanten Anlage niemals diversifiziert wird. Eine zweite Form von Randlösungen geht auf das spezielle Risikospektrum des Conditional Value-at-Risk zurück. Im Kontext optimaler Versicherungsentscheidungen mittels stop-loss-Kontrakt führt dieses dazu, dass die Versicherung bei Verwendung spektraler Risikomaße als Zielfunktion entweder gar nicht oder nur zum minimalen Selbstbehalt abgeschlossen wird. Ähnliche Schwächen finden sich auch in anderen Anwendungen, etwa bei der der Ermittlung optimaler Bestellmengen im Newsvendor-Modell. Wir können zeigen, dass diese zweite Form von Randlösungstendenzen bereits innerhalb der Klasse der spektralen Risikomaße, etwa durch die Anwendung der Subklasse der power spektralen Risikomaße anstelle des Conditional Value-at-Risk, behoben werden kann.

Suggested Citation

  • Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
  • Handle: RePEc:spr:manrev:v:66:y:2016:i:2:d:10.1007_s11301-015-0116-1
    DOI: 10.1007/s11301-015-0116-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11301-015-0116-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11301-015-0116-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    2. Khouja, Moutaz, 1999. "The single-period (news-vendor) problem: literature review and suggestions for future research," Omega, Elsevier, vol. 27(5), pages 537-553, October.
    3. Bertsimas, Dimitris & Lauprete, Geoffrey J. & Samarov, Alexander, 2004. "Shortfall as a risk measure: properties, optimization and applications," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1353-1381, April.
    4. Benati, Stefano, 2003. "The optimal portfolio problem with coherent risk measure constraints," European Journal of Operational Research, Elsevier, vol. 150(3), pages 572-584, November.
    5. Christian Gollier & Harris Schlesinger, 1996. "Arrow's theorem on the optimality of deductibles: A stochastic dominance approach (*)," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 359-363.
    6. Enrico De Giorgi, "undated". "A Note on Portfolio Selection under Various Risk Measures," IEW - Working Papers 122, Institute for Empirical Research in Economics - University of Zurich.
    7. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    8. John Cotter & Kevin Dowd, 2010. "Estimating financial risk measures for futures positions: A nonparametric approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 689-703, July.
    9. Ross, Stephen A, 1981. "Some Stronger Measures of Risk Aversion in the Small and the Large with Applications," Econometrica, Econometric Society, vol. 49(3), pages 621-638, May.
    10. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    11. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    12. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    13. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    14. Yamai, Yasuhiro & Yoshiba, Toshinao, 2002. "Comparative Analyses of Expected Shortfall and Value-at-Risk: Their Estimation Error, Decomposition, and Optimization," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 20(1), pages 87-121, January.
    15. Jammernegg, Werner & Kischka, Peter, 2009. "Risk preferences and robust inventory decisions," International Journal of Production Economics, Elsevier, vol. 118(1), pages 269-274, March.
    16. J. Tobin, 1958. "Liquidity Preference as Behavior Towards Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 25(2), pages 65-86.
    17. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    18. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    19. Marcin Fałdziński & Magdalena Osińska & Tomasz Zdanowicz, 2012. "Detecting Risk Transfer in Financial Markets using Different Risk Measures," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 4(1), pages 45-64, March.
    20. Kevin Dowd & David Blake, 2006. "After VaR: The Theory, Estimation, and Insurance Applications of Quantile‐Based Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(2), pages 193-229, June.
    21. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    22. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    23. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 156-167.
    24. Johannes Leitner, 2005. "A Short Note On Second‐Order Stochastic Dominance Preserving Coherent Risk Measures," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 649-651, October.
    25. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    26. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    27. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    28. Mark J. Machina, 1995. "Non-Expected Utility and The Robustness of the Classical Insurance Paradigm," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 20(1), pages 9-50, June.
    29. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    30. Gilbert W. Bassett, 2004. "Pessimistic Portfolio Allocation and Choquet Expected Utility," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 477-492.
    31. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    32. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    33. Yamai, Yasuhiro & Yoshiba, Toshinao, 2005. "Value-at-risk versus expected shortfall: A practical perspective," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 997-1015, April.
    34. Alexander, Gordon J. & Baptista, Alexandre M., 2002. "Economic implications of using a mean-VaR model for portfolio selection: A comparison with mean-variance analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1159-1193, July.
    35. Gotoh, Jun-ya & Takano, Yuichi, 2007. "Newsvendor solutions via conditional value-at-risk minimization," European Journal of Operational Research, Elsevier, vol. 179(1), pages 80-96, May.
    36. Alejandro Balbás & José Garrido & Silvia Mayoral, 2009. "Properties of Distortion Risk Measures," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 385-399, September.
    37. Kai A. Konrad & Stergios Skaperdas, 1993. "Self-Insurance and Self-Protection: A Nonexpected Utility Analysis," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 18(2), pages 131-146, December.
    38. Acerbi Carlo & Simonetti Prospero, 2002. "Portfolio Optimization with Spectral Measures of Risk," Papers cond-mat/0203607, arXiv.org.
    39. Werner Jammernegg & Peter Kischka, 2007. "Risk-averse and risk-taking newsvendors: a conditional expected value approach," Review of Managerial Science, Springer, vol. 1(1), pages 93-110, April.
    40. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    41. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    42. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    43. Alexander, Gordon J. & Baptista, Alexandre M., 2006. "Does the Basle Capital Accord reduce bank fragility? An assessment of the value-at-risk approach," Journal of Monetary Economics, Elsevier, vol. 53(7), pages 1631-1660, October.
    44. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    45. Sarin, Rakesh K. & Weber, Martin, 1993. "Risk-value models," European Journal of Operational Research, Elsevier, vol. 70(2), pages 135-149, October.
    46. Doherty, Neil A & Eeckhoudt, Louis, 1995. "Optimal Insurance without Expected Utility: The Dual Theory and the Linearity of Insurance Contracts," Journal of Risk and Uncertainty, Springer, vol. 10(2), pages 157-179, March.
    47. Eeckhoudt, Louis & Gollier, Christian & Schlesinger, Harris, 1991. "Increases in risk and deductible insurance," Journal of Economic Theory, Elsevier, vol. 55(2), pages 435-440, December.
    48. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    49. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    50. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    51. Massimiliano Barbi & Silvia Romagnoli, 2016. "Optimal hedge ratio under a subjective re-weighting of the original measure," Applied Economics, Taylor & Francis Journals, vol. 48(14), pages 1271-1280, March.
    52. A. Cherny, 2006. "Weighted V@R and its Properties," Finance and Stochastics, Springer, vol. 10(3), pages 367-393, September.
    53. Ken Tan & Chengguo Weng & Yi Zhang, 2009. "VAR and CTE Criteria for Optimal Quota-Share and Stop-Loss Reinsurance," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(4), pages 459-482.
    54. Alexandre Adam & Mohamed Houkari & Jean-Paul Laurent, 2008. "Spectral risk measures and portfolio selection," Post-Print hal-03676385, HAL.
    55. Ahmed, Shabbir & Cakmak, Ulas & Shapiro, Alexander, 2007. "Coherent risk measures in inventory problems," European Journal of Operational Research, Elsevier, vol. 182(1), pages 226-238, October.
    56. David Heath & Hyejin Ku, 2004. "Pareto Equilibria with coherent measures of risk," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 163-172, April.
    57. Cass, David & Stiglitz, Joseph E., 1970. "The structure of investor preferences and asset returns, and separability in portfolio allocation: A contribution to the pure theory of mutual funds," Journal of Economic Theory, Elsevier, vol. 2(2), pages 122-160, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    2. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    3. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    4. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    5. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    6. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.
    7. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 156-167.
    8. Marcelo Brutti Righi & Paulo Sergio Ceretta, 2015. "Shortfall Deviation Risk: An alternative to risk measurement," Papers 1501.02007, arXiv.org, revised May 2016.
    9. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    10. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    11. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    12. Ma, Chenghu & Wong, Wing-Keung, 2010. "Stochastic dominance and risk measure: A decision-theoretic foundation for VaR and C-VaR," European Journal of Operational Research, Elsevier, vol. 207(2), pages 927-935, December.
    13. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    14. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    15. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    16. Martin Herdegen & Nazem Khan, 2020. "Mean-$\rho$ portfolio selection and $\rho$-arbitrage for coherent risk measures," Papers 2009.05498, arXiv.org, revised Jul 2021.
    17. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    18. Xue Dong He & Hanqing Jin & Xun Yu Zhou, 2015. "Dynamic Portfolio Choice When Risk Is Measured by Weighted VaR," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 773-796, March.
    19. Martin Herdegen & Nazem Khan, 2022. "Mean‐ρ$\rho$ portfolio selection and ρ$\rho$‐arbitrage for coherent risk measures," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 226-272, January.
    20. Massimiliano Amarante, 2016. "A representation of risk measures," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 39(1), pages 95-103, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:manrev:v:66:y:2016:i:2:d:10.1007_s11301-015-0116-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.