IDEAS home Printed from
   My bibliography  Save this article

Detecting Risk Transfer in Financial Markets using Different Risk Measures


  • Marcin Fałdziński

    () (Nicolaus Copernicus University)

  • Magdalena Osińska

    () (Nicolaus Copernicus University)

  • Tomasz Zdanowicz

    () (Nicolaus Copernicus University)


High movements of asset prices constitute intrinsic elements of financial crises. There is a common agreement that extreme events are responsible for that. Making inference about the risk spillover and its effect on markets one should use such methods and tools that can fit properly for catastrophic events. In the paper Extreme Value Theory (EVT) invented particularly for modelling extreme events was used. The purpose of the paper is to model risky assets using EVT and to analyse the transfer of risk across the financial markets all over the world using the Granger causality in risk test. The concept of testing in causality in risk was extended to Spectral Risk Measure i.e., respective hypotheses were constructed and checked by simulation. The attention is concentrated on the Chinese financial processes and their relations with those in the rest of the globe. The original idea of the Granger causality in risk assumes usage of Value at Risk as a risk measure. We extended the scope of application of the test to Expected Shortfall and Spectral Risk Measure. The empirical results exhibit very interesting dependencies.

Suggested Citation

  • Marcin Fałdziński & Magdalena Osińska & Tomasz Zdanowicz, 2012. "Detecting Risk Transfer in Financial Markets using Different Risk Measures," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 4(1), pages 45-64, March.
  • Handle: RePEc:psc:journl:v:4:y:2012:i:1:p:45-64

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    2. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    3. Cotter, John & Dowd, Kevin, 2006. "Extreme spectral risk measures: An application to futures clearinghouse margin requirements," Journal of Banking & Finance, Elsevier, vol. 30(12), pages 3469-3485, December.
    4. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    5. Toda, Hiro Y. & Yamamoto, Taku, 1995. "Statistical inference in vector autoregressions with possibly integrated processes," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 225-250.
    6. Fotios C. Harmantzis & Linyan Miao & Yifan Chien, 2006. "Empirical study of value-at-risk and expected shortfall models with heavy tails," Journal of Risk Finance, Emerald Group Publishing, vol. 7(2), pages 117-135, March.
    7. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    8. Kian-Ping Lim & Muzafar Shah Habibullah & Melvin J. Hinich, 2009. "The Weak-form Efficiency of Chinese Stock Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 8(2), pages 133-163, May.
    9. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Mario Brandtner, 2016. "“Spectral Risk Measures: Properties and Limitations”: Comment on Dowd, Cotter, and Sorwar," Journal of Financial Services Research, Springer;Western Finance Association, vol. 49(1), pages 121-131, February.
    2. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer;Vienna University of Economics and Business, vol. 66(2), pages 75-115, April.

    More about this item


    extreme value theory; risk measures; Granger causality in risk; Chinese financial processes;

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:psc:journl:v:4:y:2012:i:1:p:45-64. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Krzysztof Osiewalski). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.