IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v59y2014icp156-167.html
   My bibliography  Save this article

Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?

Author

Listed:
  • Brandtner, Mario
  • Kürsten, Wolfgang

Abstract

We study the problem of optimal reinsurance as a means of risk management in the regulatory framework of Solvency II under Conditional Value-at-Risk and, as its natural extension, spectral risk measures. First, we show that stop-loss reinsurance is optimal under both Conditional Value-at-Risk and spectral risk measures. Spectral risk measures thus constitute a more general class of suitable regulatory risk measures than specific Conditional Value-at-Risk. At the same time, the established type of stop-loss reinsurance can be maintained as the optimal risk management strategy that minimizes regulatory capital. Second, we derive the optimal deductibles for stop-loss reinsurance. We show that under Conditional Value-at-Risk, the optimal deductible tends towards restrictive and counter-intuitive corner solutions or “plunging”, which is a serious objection against its use in regulatory risk management. By means of the broader class of spectral risk measures, we are able to overcome this shortcoming as optimal deductibles are now interior solutions. Especially, the recently discussed power spectral risk measures and the Wang risk measure are shown to avoid any plunging. They yield a one-to-one correspondence between the risk parameter and the optimal deductible and, thus, provide economically plausible risk management strategies.

Suggested Citation

  • Brandtner, Mario & Kürsten, Wolfgang, 2014. "Solvency II, regulatory capital, and optimal reinsurance: How good are Conditional Value-at-Risk and spectral risk measures?," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 156-167.
  • Handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:156-167
    DOI: 10.1016/j.insmatheco.2014.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016766871400122X
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kevin Dowd & John Cotter & Ghulam Sorwar, 2008. "Spectral Risk Measures: Properties and Limitations," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 61-75, August.
    2. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    5. Szego, Giorgio, 2002. "Measures of risk," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1253-1272, July.
    6. Doherty, Neil A & Eeckhoudt, Louis, 1995. "Optimal Insurance without Expected Utility: The Dual Theory and the Linearity of Insurance Contracts," Journal of Risk and Uncertainty, Springer, vol. 10(2), pages 157-179, March.
    7. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    8. Gollier, Christian & Schlesinger, Harris, 1996. "Arrow's Theorem on the Optimality of Deductibles: A Stochastic Dominance Approach," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 7(2), pages 359-363, February.
    9. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    10. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 37(01), pages 93-112, May.
    11. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    12. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    13. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 41(02), pages 487-509, November.
    14. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    15. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, Alexandra, 2016. "The economic value of controlling for large losses in portfolio selection," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 81-91.
    2. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer;Vienna University of Economics and Business, vol. 66(2), pages 75-115, April.

    More about this item

    Keywords

    Optimal reinsurance; Stop-loss; Optimal deductible; Spectral risk measures; Conditional Value-at-Risk;

    JEL classification:

    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:59:y:2014:i:c:p:156-167. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.