IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v237y2016i1d10.1007_s10479-014-1584-8.html
   My bibliography  Save this article

Optimal VaR-based risk management with reinsurance

Author

Listed:
  • Jianfa Cong

    (University of Waterloo)

  • Ken Seng Tan

    (University of Waterloo
    Central University of Finance and Economics)

Abstract

It is well-known that reinsurance can be an effective risk management solution for financial institutions such as the insurance companies. The optimal reinsurance solution depends on a number of factors including the criterion of optimization and the premium principle adopted by the reinsurer. In this paper, we analyze the Value-at-Risk based optimal risk management solution using reinsurance under a class of premium principles that is monotonic and piecewise. The monotonic piecewise premium principles include not only those which preserve stop-loss ordering, but also the piecewise premium principles which are monotonic and constructed by concatenating a series of premium principles. By adopting the monotonic piecewise premium principle, our proposed optimal reinsurance model has a number of advantages. In particular, our model has the flexibility of allowing the reinsurer to use different risk loading factors for a given premium principle or use entirely different premium principles depending on the layers of risk. Our proposed model can also analyze the optimal reinsurance strategy in the context of multiple reinsurers that may use different premium principles (as attributed to the difference in risk attitude and/or imperfect information). Furthermore, by artfully imposing certain constraints on the ceded loss functions, the resulting model can be used to capture the reinsurer’s willingness and/or capacity to accept risk or to control counterparty risk from the perspective of the insurer. Under some technical assumptions, we derive explicitly the optimal form of the reinsurance strategies in all the above cases. In particular, we show that a truncated stop-loss reinsurance treaty or a limited stop-loss reinsurance treaty can be optimal depending on the constraint imposed on the retained and/or ceded loss functions. Some numerical examples are provided to further compare and contrast our proposed models to the existing models.

Suggested Citation

  • Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
  • Handle: RePEc:spr:annopr:v:237:y:2016:i:1:d:10.1007_s10479-014-1584-8
    DOI: 10.1007/s10479-014-1584-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-014-1584-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-014-1584-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    2. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    3. Lesław Gajek & Dariusz Zagrodny, 2004. "Reinsurance Arrangements Maximizing Insurer's Survival Probability," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 71(3), pages 421-435, September.
    4. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.
    5. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: applications," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 133-161, October.
    6. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725, September.
    7. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    8. Marek Kaluszka & Andrzej Okolewski, 2008. "An Extension of Arrow's Result on Optimal Reinsurance Contract," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 275-288, June.
    9. Gajek, Leslaw & Zagrodny, Dariusz, 2004. "Optimal reinsurance under general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 227-240, April.
    10. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    11. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    12. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    13. Hürlimann, Werner, 1998. "On Stop-Loss Order and the Distortion Pricing Principle," ASTIN Bulletin, Cambridge University Press, vol. 28(1), pages 119-134, May.
    14. Kahn, Paul Markham, 1961. "Some Remarks on a Recent Paper by Borch*)," ASTIN Bulletin, Cambridge University Press, vol. 1(5), pages 265-272, July.
    15. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin, Cambridge University Press, vol. 41(2), pages 487-509, November.
    16. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    17. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    2. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    3. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    4. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
    5. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    6. Yinzhi Wang & Erik B{o}lviken, 2019. "How much is optimal reinsurance degraded by error?," Papers 1912.04175, arXiv.org.
    7. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    8. Liyuan Lin & Fangda Liu & Jingzhen Liu abd Luyang Yu, 2023. "The optimal reinsurance strategy with price-competition between two reinsurers," Papers 2305.00509, arXiv.org.
    9. Boonen, Tim J. & Ghossoub, Mario, 2021. "Optimal reinsurance with multiple reinsurers: Distortion risk measures, distortion premium principles, and heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 101(PA), pages 23-37.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    2. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    3. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    4. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    5. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    6. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.
    7. Yuxia Huang & Chuancun Yin, 2018. "A unifying approach to constrained and unconstrained optimal reinsurance," Papers 1807.06892, arXiv.org.
    8. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.
    9. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.
    10. Chi, Yichun, 2018. "Insurance choice under third degree stochastic dominance," Insurance: Mathematics and Economics, Elsevier, vol. 83(C), pages 198-205.
    11. Alejandro Balbas & Beatriz Balbas & Raquel Balbas, 2013. "Optimal Reinsurance: A Risk Sharing Approach," Risks, MDPI, vol. 1(2), pages 1-12, August.
    12. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    13. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    14. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    15. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    16. Yinzhi Wang & Erik B{o}lviken, 2019. "How much is optimal reinsurance degraded by error?," Papers 1912.04175, arXiv.org.
    17. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
    18. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    19. Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
    20. Sun, Haoze & Weng, Chengguo & Zhang, Yi, 2017. "Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 197-214.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:237:y:2016:i:1:d:10.1007_s10479-014-1584-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.