IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v72y2017icp197-214.html
   My bibliography  Save this article

Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework

Author

Listed:
  • Sun, Haoze
  • Weng, Chengguo
  • Zhang, Yi

Abstract

In this paper, the Conditional Value-at-Risk (CVaR) is adopted to measure the total loss of multiple lines of insurance business and two nonparametric estimation methods are introduced to explore the optimal multivariate quota-share reinsurance under a mean-CVaR framework. While almost all the existing literature on optimal reinsurance are based on a probabilistic derivation, the present paper relies on a statistical analysis. The proposed optimal reinsurance models are directly formulated on empirical data and no explicit distributional assumption on the underlying risk vector is required. The resulting nonparametric reinsurance models are convex and computationally amenable, circumventing the difficulty of computing CVaR of the sum of a generally dependent random vector. Statistical consistency of the resulting estimators for the best CVaR is established for both nonparametric models, allowing empirical data to be generated from any stationary process satisfying strong mixing conditions. Finally, numerical experiments are presented to show that a routine bootstrap procedure can capture the distributions of the resulting risk measures well for independent data.

Suggested Citation

  • Sun, Haoze & Weng, Chengguo & Zhang, Yi, 2017. "Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 197-214.
  • Handle: RePEc:eee:insuma:v:72:y:2017:i:c:p:197-214
    DOI: 10.1016/j.insmatheco.2016.11.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668716302098
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cai, Zongwu & Wang, Xian, 2008. "Nonparametric estimation of conditional VaR and expected shortfall," Journal of Econometrics, Elsevier, vol. 147(1), pages 120-130, November.
    2. Gajek, Leslaw & Zagrodny, Dariusz, 2004. "Optimal reinsurance under general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 227-240, April.
    3. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    4. Cai, Jun & Wei, Wei, 2012. "Optimal reinsurance with positively dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 57-63.
    5. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.
    6. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    7. K. C. Cheung & K. C. J. Sung & S. C. P. Yam, 2014. "Risk-Minimizing Reinsurance Protection For Multivariate Risks," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(1), pages 219-236, March.
    8. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    9. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    10. Young, Virginia R., 1999. "Optimal insurance under Wang's premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 109-122, November.
    11. Hung-Hsi Huang, 2006. "Optimal insurance contract under a value-at-risk constraint," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 91-110, December.
    12. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(01), pages 169-192, February.
    13. Song Xi Chen, 2005. "Nonparametric Inference of Value-at-Risk for Dependent Financial Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(2), pages 227-255.
    14. Asimit, Alexandru V. & Badescu, Alexandru M. & Verdonck, Tim, 2013. "Optimal risk transfer under quantile-based risk measurers," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 252-265.
    15. Hung-Hsi Huang, 2006. "Optimal insurance contract under a value-at-risk constraint," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 91-110, December.
    16. Denuit, Michel & Vermandele, Catherine, 1998. "Optimal reinsurance and stop-loss order," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 229-233, July.
    17. Wang, Xing & Peng, Liang, 2016. "Inference for intermediate Haezendonck–Goovaerts risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 231-240.
    18. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    19. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    21. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    22. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    23. Marek Kaluszka & Andrzej Okolewski, 2008. "An Extension of Arrow's Result on Optimal Reinsurance Contract," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 275-288.
    24. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:72:y:2017:i:c:p:197-214. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.