IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v37y2016icp110-127.html
   My bibliography  Save this article

Optimal insurance contract under VaR and CVaR constraints

Author

Listed:
  • Wang, Ching-Ping
  • Huang, Hung-Hsi

Abstract

This study endogenously develops an optimal insurance contractual form for maximizing insured expected utility under VaR and CVaR constraints. We find that CVaR constraint does not affect the contractual form, but may increase minimum insurance premium requirement. Additionally, when the VaR constraint is binding, the optimal contract is a double deductible insurance. However, if the contract is restricted to a regular form (both indemnity schedule and retained loss schedule are continuously nondecreasing) for avoiding moral hazard problem, the optimal contract is a piecewise linear deductible insurance. Finally, we provide intuitive comparison between this study result and relevant studies.

Suggested Citation

  • Wang, Ching-Ping & Huang, Hung-Hsi, 2016. "Optimal insurance contract under VaR and CVaR constraints," The North American Journal of Economics and Finance, Elsevier, vol. 37(C), pages 110-127.
  • Handle: RePEc:eee:ecofin:v:37:y:2016:i:c:p:110-127
    DOI: 10.1016/j.najef.2016.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940816300146
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hung-Hsi Huang, 2006. "Optimal insurance contract under a value-at-risk constraint," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 91-110, December.
    2. Hung-Hsi Huang, 2006. "Optimal insurance contract under a value-at-risk constraint," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 91-110, December.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    5. Carlier, G. & Dana, R.-A., 2005. "Rearrangement inequalities in non-convex insurance models," Journal of Mathematical Economics, Elsevier, vol. 41(4-5), pages 483-503, August.
    6. Zhou, Chunyang & Wu, Chongfeng, 2008. "Optimal insurance under the insurer's risk constraint," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 992-999, June.
    7. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    8. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    9. Ching-Ping Wang & David Shyu & Hung-Hsi Huang, 2005. "Optimal Insurance Design Under a Value-at-Risk Framework," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 161-179, December.
    10. Ching-Ping Wang & Hung-Hsi Huang, 2012. "Optimal insurance contract and coverage levels under loss aversion utility preference," Quantitative Finance, Taylor & Francis Journals, vol. 12(10), pages 1615-1628, October.
    11. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 41(02), pages 487-509, November.
    12. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    13. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    14. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    15. Chunyang Zhou & Chongfeng Wu, 2009. "Optimal Insurance Under the Insurer's VaR Constraint," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 34(2), pages 140-154, December.
    16. Ching-Ping Wang & David Shyu & Hung-Hsi Huang, 2005. "Optimal Insurance Design Under a Value-at-Risk Framework," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 161-179, December.
    17. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    18. Zhou, Chunyang & Wu, Wenfeng & Wu, Chongfeng, 2010. "Optimal insurance in the presence of insurer's loss limit," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 300-307, April.
    19. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725.
    20. repec:dau:papers:123456789/5389 is not listed on IDEAS
    21. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    22. Lu, ZhiYi & Liu, LePing & Meng, ShengWang, 2013. "Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 46-51.
    23. Chi, Yichun, 2012. "Reinsurance Arrangements Minimizing the Risk-Adjusted Value of an Insurer's Liability," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 42(02), pages 529-557, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sharif Mozumder & Arafatur Rahman, 2016. "Market Risk Of Investment In Us Subprime Crisis: Comparison Of A Pure Diffusion And A Pure Jump Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:37:y:2016:i:c:p:110-127. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.