IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Optimal insurance under the insurer's risk constraint

Listed author(s):
  • Zhou, Chunyang
  • Wu, Chongfeng
Registered author(s):

    In this paper, we impose the insurer's risk constraint on Arrow's optimal insurance model. The insured aims to maximize his/her expected utility of terminal wealth, under the constraint that the insurer wishes to control the expected loss of his/her terminal wealth below some prespecified level. We solve the problem, and it is shown that when the insurer's risk constraint is binding, the solution to the problem is not linear, but piecewise linear deductible. Moreover, it can be shown that the insured's optimal expected utility will increase if the insurer increases his/her risk tolerance.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(07)00136-9
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Insurance: Mathematics and Economics.

    Volume (Year): 42 (2008)
    Issue (Month): 3 (June)
    Pages: 992-999

    as
    in new window

    Handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:992-999
    Contact details of provider: Web page: http://www.elsevier.com/locate/inca/505554

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as
    in new window


    1. Promislow, S.David & Young, Virginia R., 2005. "Unifying framework for optimal insurance," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 347-364, June.
    2. Hung-Hsi Huang, 2006. "Optimal insurance contract under a value-at-risk constraint," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 31(2), pages 91-110, December.
    3. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    4. Gajek, Leslaw & Zagrodny, Dariusz, 2004. "Optimal reinsurance under general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 34(2), pages 227-240, April.
    5. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    6. Gajek, Leslaw & Zagrodny, Dariusz, 2000. "Insurer's optimal reinsurance strategies," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 105-112, August.
    7. Zhou, Chunyang & Wu, Chongfeng & Zhang, Shengping & Huang, Xuejun, 2008. "An optimal insurance strategy for an individual under an intertemporal equilibrium," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 255-260, February.
    8. Ching-Ping Wang & David Shyu & Hung-Hsi Huang, 2005. "Optimal Insurance Design Under a Value-at-Risk Framework," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(2), pages 161-179, December.
    9. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:42:y:2008:i:3:p:992-999. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.