IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v67y2016icp65-76.html
   My bibliography  Save this article

Marginal Indemnification Function formulation for optimal reinsurance

Author

Listed:
  • Zhuang, Sheng Chao
  • Weng, Chengguo
  • Tan, Ken Seng
  • Assa, Hirbod

Abstract

In this paper, we propose to combine the Marginal Indemnification Function (MIF) formulation and the Lagrangian dual method to solve optimal reinsurance model with distortion risk measure and distortion reinsurance premium principle. The MIF method exploits the absolute continuity of admissible indemnification functions and formulates optimal reinsurance model into a functional linear programming of determining an optimal measurable function valued over a bounded interval. The MIF method was recently introduced to analyze the reinsurance model but without premium budget constraint. In this paper, a Lagrangian dual method is applied to combine with MIF to solve for optimal reinsurance solutions under premium budget constraint. Compared with the existing literature, the proposed integrated MIF-based Lagrangian dual method provides a more technically convenient and transparent solution to the optimal reinsurance design. To demonstrate the practicality of the proposed method, analytical solution is derived on a particular reinsurance model that involves minimizing Conditional Value at Risk (a special case of distortion function) and with the reinsurance premium being determined by the inverse-S shaped distortion principle.

Suggested Citation

  • Zhuang, Sheng Chao & Weng, Chengguo & Tan, Ken Seng & Assa, Hirbod, 2016. "Marginal Indemnification Function formulation for optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 65-76.
  • Handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:65-76
    DOI: 10.1016/j.insmatheco.2015.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715300998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    3. Chi, Yichun & Tan, Ken Seng, 2013. "Optimal reinsurance with general premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 180-189.
    4. Acerbi, Carlo, 2002. "Spectral measures of risk: A coherent representation of subjective risk aversion," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1505-1518, July.
    5. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    6. Assa, Hirbod, 2015. "On optimal reinsurance policy with distortion risk measures and premiums," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 70-75.
    7. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin, Cambridge University Press, vol. 37(1), pages 93-112, May.
    8. Young, Virginia R., 1999. "Optimal insurance under Wang's premium principle," Insurance: Mathematics and Economics, Elsevier, vol. 25(2), pages 109-122, November.
    9. Kaluszka, Marek & Krzeszowiec, Michał, 2012. "Pricing insurance contracts under Cumulative Prospect Theory," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 159-166.
    10. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    11. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    12. Marc Rieger & Mei Wang, 2006. "Cumulative prospect theory and the St. Petersburg paradox," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 665-679, August.
    13. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    14. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    15. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    16. Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2011. "Optimality of general reinsurance contracts under CTE risk measure," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 175-187, September.
    17. Balbás, Alejandro & Balbás, Beatriz & Balbás, Raquel & Heras, Antonio, 2015. "Optimal reinsurance under risk and uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 61-74.
    18. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.
    19. Jonathan Ingersoll, 2008. "Non‐Monotonicity of the Tversky‐Kahneman Probability‐Weighting Function: A Cautionary Note," European Financial Management, European Financial Management Association, vol. 14(3), pages 385-390, June.
    20. Mohammed Abdellaoui, 2000. "Parameter-Free Elicitation of Utility and Probability Weighting Functions," Management Science, INFORMS, vol. 46(11), pages 1497-1512, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxia Huang & Chuancun Yin, 2018. "A unifying approach to constrained and unconstrained optimal reinsurance," Papers 1807.06892, arXiv.org.
    2. Mi Chen & Wenyuan Wang & Ruixing Ming, 2016. "Optimal Reinsurance Under General Law-Invariant Convex Risk Measure and TVaR Premium Principle," Risks, MDPI, vol. 4(4), pages 1-12, December.
    3. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.
    4. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    5. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "The role of a representative reinsurer in optimal reinsurance," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 196-204.
    6. Jianfa Cong & Ken Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    7. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    8. Zheng, Yanting & Cui, Wei, 2014. "Optimal reinsurance with premium constraint under distortion risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 109-120.
    9. Chi, Yichun & Weng, Chengguo, 2013. "Optimal reinsurance subject to Vajda condition," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 179-189.
    10. Jianfa Cong & Ken Seng Tan, 2016. "Optimal VaR-based risk management with reinsurance," Annals of Operations Research, Springer, vol. 237(1), pages 177-202, February.
    11. Ghossoub, Mario, 2019. "Optimal insurance under rank-dependent expected utility," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 51-66.
    12. Cheung, Ka Chun & He, Wanting & Wang, He, 2023. "Multi-constrained optimal reinsurance model from the duality perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 199-214.
    13. Ghossoub, Mario & Zhu, Michael B., 2024. "Stackelberg equilibria with multiple policyholders," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 189-201.
    14. Sun, Haoze & Weng, Chengguo & Zhang, Yi, 2017. "Optimal multivariate quota-share reinsurance: A nonparametric mean-CVaR framework," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 197-214.
    15. Birghila, Corina & Pflug, Georg Ch., 2019. "Optimal XL-insurance under Wasserstein-type ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 30-43.
    16. Lu, ZhiYi & Meng, LiLi & Wang, Yujin & Shen, Qingjie, 2016. "Optimal reinsurance under VaR and TVaR risk measures in the presence of reinsurer’s risk limit," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 92-100.
    17. Cheung, Ka Chun & Phillip Yam, Sheung Chi & Yuen, Fei Lung & Zhang, Yiying, 2020. "Concave distortion risk minimizing reinsurance design under adverse selection," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 155-165.
    18. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    19. Alejandro Balbas & Beatriz Balbas & Raquel Balbas, 2013. "Optimal Reinsurance: A Risk Sharing Approach," Risks, MDPI, vol. 1(2), pages 1-12, August.
    20. Salvatore Greco & Fabio Rindone, 2014. "The bipolar Choquet integral representation," Theory and Decision, Springer, vol. 77(1), pages 1-29, June.

    More about this item

    Keywords

    Optimal reinsurance; Marginal indemnification function; Lagrangian dual method; Distortion risk measure; Inverse-S shaped distortion premium principle;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:67:y:2016:i:c:p:65-76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.