IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Cumulative prospect theory and the St. Petersburg paradox

  • Marc Rieger

    ()

  • Mei Wang

    ()

Registered author(s):

    We find that in cumulative prospect theory (CPT) with a concave value function in gains, a lottery with finite expected value may have infinite subjective value. This problem does not occur in expected utility theory. The paradox occurs in particular in the setting and the parameter regime studied by Tversky and Kahneman [15] and in subsequent works. We characterize situations in CPT where the problem can be resolved. In particular, we define a class of admissible probability distributions and admissible parameter regimes for the weighting- and value functions for which finiteness of the subjective value can be proved. Alternatively, we suggest a new weighting function for CPT which guarantees finite subjective value for all lotteries with finite expected value, independent of the choice of the value function. Some of these results have already been found independently by Blavatskyy [4] in the context of discrete lotteries. Copyright Springer-Verlag Berlin/Heidelberg 2006

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s00199-005-0641-6
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Economic Theory.

    Volume (Year): 28 (2006)
    Issue (Month): 3 (08)
    Pages: 665-679

    as
    in new window

    Handle: RePEc:spr:joecth:v:28:y:2006:i:3:p:665-679
    Contact details of provider: Web page: http://link.springer.de/link/service/journals/00199/index.htm

    Order Information: Web: http://link.springer.de/orders.htm

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:28:y:2006:i:3:p:665-679. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.