IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v51y2012i2p310-321.html
   My bibliography  Save this article

Optimal reinsurance under variance related premium principles

Author

Listed:
  • Chi, Yichun

Abstract

In this paper, we investigate the optimal form of reinsurance when the insurer seeks to minimize the value at risk(VaR) or the conditional value at risk(CVaR) of his/her total risk exposure. In order to exclude the moral hazard from a reinsurance treaty, both the ceded and retained loss functions are constrained to be increasing. Under the additional assumption that the reinsurance premium is calculated by a variance related principle, we show that the layer reinsurance is always optimal over both the VaR and CVaR criteria. Finally, the variance and standard deviation premium principles are applied to illustrate how to derive the optimal deductible and the upper limit of layer reinsurance.

Suggested Citation

  • Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
  • Handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:310-321
    DOI: 10.1016/j.insmatheco.2012.05.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668712000662
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Deprez, Olivier & Gerber, Hans U., 1985. "On convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 4(3), pages 179-189, July.
    2. Cai, Jun & Tan, Ken Seng & Weng, Chengguo & Zhang, Yi, 2008. "Optimal reinsurance under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 185-196, August.
    3. Kaluszka, Marek, 2001. "Optimal reinsurance under mean-variance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 28(1), pages 61-67, February.
    4. Dhaene, J. & Denuit, M. & Goovaerts, M. J. & Kaas, R. & Vyncke, D., 2002. "The concept of comonotonicity in actuarial science and finance: theory," Insurance: Mathematics and Economics, Elsevier, vol. 31(1), pages 3-33, August.
    5. Cai, Jun & Tan, Ken Seng, 2007. "Optimal Retention for a Stop-loss Reinsurance Under the VaR and CTE Risk Measures," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 37(01), pages 93-112, May.
    6. Kaluszka, Marek, 2005. "Optimal reinsurance under convex principles of premium calculation," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 375-398, June.
    7. Guerra, Manuel & Centeno, M.L., 2012. "Are quantile risk measures suitable for risk-transfer decisions?," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 446-461.
    8. Guerra, Manuel & Centeno, Maria de Lourdes, 2010. "Optimal Reinsurance for Variance Related Premium Calculation Principles," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 40(01), pages 97-121, May.
    9. Chi, Yichun & Tan, Ken Seng, 2011. "Optimal Reinsurance under VaR and CVaR Risk Measures: a Simplified Approach," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 41(02), pages 487-509, November.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    11. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2009. "Optimal reinsurance with general risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(3), pages 374-384, June.
    12. Carole Bernard & Weidong Tian, 2009. "Optimal Reinsurance Arrangements Under Tail Risk Measures," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(3), pages 709-725.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    2. Sancho Salcedo-Sanz & L. Carro-Calvo & Mercè Claramunt & Anna Castañer & Maite Marmol, 2013. "An Analysis of Black-box Optimization Problems in Reinsurance: Evolutionary-based Approaches," Working Papers XREAP2013-04, Xarxa de Referència en Economia Aplicada (XREAP), revised May 2013.
    3. Meng, Hui & Zhou, Ming & Siu, Tak Kuen, 2016. "Optimal reinsurance policies with two reinsurers in continuous time," Economic Modelling, Elsevier, vol. 59(C), pages 182-195.
    4. Zhu, Yunzhou & Chi, Yichun & Weng, Chengguo, 2014. "Multivariate reinsurance designs for minimizing an insurer’s capital requirement," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 144-155.
    5. Lu, ZhiYi & Liu, LePing & Meng, ShengWang, 2013. "Optimal reinsurance with concave ceded loss functions under VaR and CTE risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 46-51.
    6. Hirbod Assa, 2015. "Optimal risk allocation in a market with non-convex preferences," Papers 1503.04460, arXiv.org.
    7. Amir T. Payandeh Najafabadi & Ali Panahi Bazaz, 2017. "An Optimal Multi-layer Reinsurance Policy under Conditional Tail Expectation," Papers 1701.05447, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:51:y:2012:i:2:p:310-321. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.