IDEAS home Printed from https://ideas.repec.org/p/mnh/spaper/2779.html
   My bibliography  Save this paper

Risk measures

Author

Listed:
  • Albrecht, Peter

Abstract

The present review of (financial) risk measures, prepared for the Encyclopaedia of Actuarial Science, first distinguishes two conceptions of risk. Risk of the first kind conceives risk as the magnitude of (one- or two-sided) deviations from a target, whereas risk of the second kind conceives risk as necessary capital or necessary premium, respectively. Some important axiomatic characterizations of risk measures are reviewed, including a characterization of a correspondence between risk measures of the first kind and risk measures of the second kind. Finally, a detailed overview of different risk measures of the first and second kind is presented.

Suggested Citation

  • Albrecht, Peter, 2003. "Risk measures," Papers 03-01, Sonderforschungsbreich 504.
  • Handle: RePEc:mnh:spaper:2779
    as

    Download full text from publisher

    File URL: https://madoc.bib.uni-mannheim.de/2779/1/dp03_01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sarin, Rakesh K. & Weber, Martin, 1993. "Risk-value models," European Journal of Operational Research, Elsevier, vol. 70(2), pages 135-149, October.
    2. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    3. Dirk Tasche, 2002. "Expected Shortfall and Beyond," Papers cond-mat/0203558, arXiv.org, revised Oct 2002.
    4. Jan Dhaene & Mark Goovaerts & Rob Kaas, 2003. "Economic Capital Allocation Derived from Risk Measures," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(2), pages 44-56.
    5. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    6. Tasche, Dirk, 2002. "Expected shortfall and beyond," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1519-1533, July.
    7. Jun-ya Gotoh & Hiroshi Konno, 2000. "Third Degree Stochastic Dominance and Mean-Risk Analysis," Management Science, INFORMS, vol. 46(2), pages 289-301, February.
    8. Wang, Shaun S. & Young, Virginia R. & Panjer, Harry H., 1997. "Axiomatic characterization of insurance prices," Insurance: Mathematics and Economics, Elsevier, vol. 21(2), pages 173-183, November.
    9. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    10. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    11. Jianmin Jia & James S. Dyer, 1996. "A Standard Measure of Risk and Risk-Value Models," Management Science, INFORMS, vol. 42(12), pages 1691-1705, December.
    12. Christian S. Pedersen & Stephen E. Satchell, 1998. "An Extended Family of Financial-Risk Measures," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 23(2), pages 89-117, December.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. J. DHaene & M. Goovaerts & R. Kaas, 2001. "Risk Measures, Measures for Insolvency Risk and Economical Capital Allocation," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(4), pages 545-562.
    15. Lynn Wirch, Julia & Hardy, Mary R., 1999. "A synthesis of risk measures for capital adequacy," Insurance: Mathematics and Economics, Elsevier, vol. 25(3), pages 337-347, December.
    16. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    17. David E. Bell, 1995. "Risk, Return, and Utility," Management Science, INFORMS, vol. 41(1), pages 23-30, January.
    18. Stone, Bernell K, 1973. "A General Class of Three-Parameter Risk Measures," Journal of Finance, American Finance Association, vol. 28(3), pages 675-685, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    2. Philippe Delquié, 2012. "Risk Measures from Risk-Reducing Experiments," Decision Analysis, INFORMS, vol. 9(2), pages 96-102, June.
    3. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    4. Boonen, Tim J. & De Waegenaere, Anja & Norde, Henk, 2020. "A generalization of the Aumann–Shapley value for risk capital allocation problems," European Journal of Operational Research, Elsevier, vol. 282(1), pages 277-287.
    5. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    6. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    7. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    8. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    9. Dominique Guegan & Bertrand K Hassani, 2014. "Distortion Risk Measures or the Transformation of Unimodal Distributions into Multimodal Functions," Documents de travail du Centre d'Economie de la Sorbonne 14008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    10. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    11. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    12. Schuhmacher, Frank & Auer, Benjamin R., 2014. "Sufficient conditions under which SSD- and MR-efficient sets are identical," European Journal of Operational Research, Elsevier, vol. 239(3), pages 756-763.
    13. Steven Kou & Xianhua Peng & Chris C. Heyde, 2013. "External Risk Measures and Basel Accords," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 393-417, August.
    14. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    15. Boonen, T.J. & De Waegenaere, A.M.B. & Norde, H.W., 2012. "A Generalization of the Aumann-Shapley Value for Risk Capital Allocation Problems," Other publications TiSEM 2c502ef8-76f0-47f5-ab45-1, Tilburg University, School of Economics and Management.
    16. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    17. Robert Jarrow & Feng Zhao, 2006. "Downside Loss Aversion and Portfolio Management," Management Science, INFORMS, vol. 52(4), pages 558-566, April.
    18. Steven Kou & Xianhua Peng, 2014. "On the Measurement of Economic Tail Risk," Papers 1401.4787, arXiv.org, revised Aug 2015.
    19. Ivan Granito & Paolo De Angelis, 2015. "Capital allocation and risk appetite under Solvency II framework," Papers 1511.02934, arXiv.org.
    20. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mnh:spaper:2779. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Katharina Rautenberg). General contact details of provider: http://edirc.repec.org/data/sfmande.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.