IDEAS home Printed from https://ideas.repec.org/p/igi/igierp/498.html
   My bibliography  Save this paper

Mean-Risk Analysis with Enhanced Behavioral Content

Author

Listed:
  • Alessandra Cillo
  • Philippe Delquié

Abstract

We study a Mean-Risk model derived from a behavioral theory of Disappointment with multiple reference points. One distinguishing feature of the risk measure is that it is based on mutual deviations of outcomes, not deviations from a specific target. We prove necessary and sufficient conditions for strict first and second order stochastic dominance, and show that the model is, in addition, a Convex Risk Measure. The model allows for richer, and behaviorally more plausible, risk preference patterns than competing models with equal degrees of freedom, including Expected Utility (EU), Mean-Variance (MV), Mean-Gini (MG), and models based on non-additive probability weighting, such a Dual Theory (DT). For example, in asset allocation, the decision-maker can abstain from diversifying in a risky asset unless it meets a threshold performance, and gradually invest beyond this threshold, which appears more acceptable than the extreme solutions provided by either EU and MV (always diversify) or DT and MG (always plunge). In asset trading, the model allows no-trade intervals, like DT and MG, in some, but not all, situations. An illustrative application to portfolio selection is presented. The model can provide an improved criterion for Mean-Risk analysis by injecting a new level of behavioral realism and flexibility, while maintaining key normative properties. Key words: Risk analysis; Uncertainty modeling; Utility theory; Stochastic dominance; Convex risk measures

Suggested Citation

  • Alessandra Cillo & Philippe Delquié, 2013. "Mean-Risk Analysis with Enhanced Behavioral Content," Working Papers 498, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  • Handle: RePEc:igi:igierp:498
    as

    Download full text from publisher

    File URL: ftp://ftp.igier.unibocconi.it/wp/2013/498.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. De Giorgi, Enrico, 2005. "Reward-risk portfolio selection and stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 895-926, April.
    3. Sarin, Rakesh K. & Weber, Martin, 1993. "Risk-value models," European Journal of Operational Research, Elsevier, vol. 70(2), pages 135-149, October.
    4. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    5. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    6. Mitchell, Douglas W. & Gelles, Gregory M., 2003. "Risk-value models: Restrictions and applications," European Journal of Operational Research, Elsevier, vol. 145(1), pages 109-120, February.
    7. Doherty, Neil A & Eeckhoudt, Louis, 1995. "Optimal Insurance without Expected Utility: The Dual Theory and the Linearity of Insurance Contracts," Journal of Risk and Uncertainty, Springer, vol. 10(2), pages 157-179, March.
    8. Chateauneuf, Alain & Ventura, Caroline, 2010. "The no-trade interval of Dow and Werlang: Some clarifications," Mathematical Social Sciences, Elsevier, vol. 59(1), pages 1-14, January.
    9. Dyer, James S. & Jianmin Jia, 1997. "Relative risk--value models," European Journal of Operational Research, Elsevier, vol. 103(1), pages 170-185, November.
    10. Dentcheva, Darinka & Ruszczynski, Andrzej, 2006. "Portfolio optimization with stochastic dominance constraints," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 433-451, February.
    11. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    12. Segal, Uzi & Spivak, Avia, 1990. "First order versus second order risk aversion," Journal of Economic Theory, Elsevier, vol. 51(1), pages 111-125, June.
    13. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    14. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    15. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    16. Yitzhaki, Shlomo, 1982. "Stochastic Dominance, Mean Variance, and Gini's Mean Difference," American Economic Review, American Economic Association, vol. 72(1), pages 178-185, March.
    17. John C. Hershey & Paul J. H. Schoemaker, 1985. "Probability Versus Certainty Equivalence Methods in Utility Measurement: Are they Equivalent?," Management Science, INFORMS, vol. 31(10), pages 1213-1231, October.
    18. Fabio Maccheroni & Massimo Marinacci & Aldo Rustichini, 2006. "Ambiguity Aversion, Robustness, and the Variational Representation of Preferences," Econometrica, Econometric Society, vol. 74(6), pages 1447-1498, November.
    19. Machina, Mark J, 1982. ""Expected Utility" Analysis without the Independence Axiom," Econometrica, Econometric Society, vol. 50(2), pages 277-323, March.
    20. David B. Brown & Melvyn Sim, 2009. "Satisficing Measures for Analysis of Risky Positions," Management Science, INFORMS, vol. 55(1), pages 71-84, January.
    21. Dow, James & Werlang, Sergio Ribeiro da Costa, 1992. "Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio," Econometrica, Econometric Society, vol. 60(1), pages 197-204, January.
    22. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    23. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    24. Jianmin Jia & James S. Dyer, 1996. "A Standard Measure of Risk and Risk-Value Models," Management Science, INFORMS, vol. 42(12), pages 1691-1705, December.
    25. Haim Levy, 1992. "Stochastic Dominance and Expected Utility: Survey and Analysis," Management Science, INFORMS, vol. 38(4), pages 555-593, April.
    26. Botond Koszegi & Matthew Rabin, 2007. "Reference-Dependent Risk Attitudes," American Economic Review, American Economic Association, vol. 97(4), pages 1047-1073, September.
    27. Christian S. Pedersen & Stephen E. Satchell, 1998. "An Extended Family of Financial-Risk Measures," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 23(2), pages 89-117, December.
    28. Yitzhaki, Shlomo, 1983. "On an Extension of the Gini Inequality Index," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 617-628, October.
    29. Philippe Delquié & Alessandra Cillo, 2006. "Disappointment without prior expectation: a unifying perspective on decision under risk," Journal of Risk and Uncertainty, Springer, vol. 33(3), pages 197-215, December.
    30. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    31. Egozcue, Martin & Wong, Wing-Keung, 2010. "Gains from diversification on convex combinations: A majorization and stochastic dominance approach," European Journal of Operational Research, Elsevier, vol. 200(3), pages 893-900, February.
    32. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    33. Wong, Wing-Keung, 2007. "Stochastic dominance and mean-variance measures of profit and loss for business planning and investment," European Journal of Operational Research, Elsevier, vol. 182(2), pages 829-843, October.
    34. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    35. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    36. Ma, Chenghu & Wong, Wing-Keung, 2010. "Stochastic dominance and risk measure: A decision-theoretic foundation for VaR and C-VaR," European Journal of Operational Research, Elsevier, vol. 207(2), pages 927-935, December.
    37. David E. Bell, 1995. "Risk, Return, and Utility," Management Science, INFORMS, vol. 41(1), pages 23-30, January.
    38. Graham Loomes & Robert Sugden, 1986. "Disappointment and Dynamic Consistency in Choice under Uncertainty," Review of Economic Studies, Oxford University Press, vol. 53(2), pages 271-282.
    39. Stone, Bernell K, 1973. "A General Class of Three-Parameter Risk Measures," Journal of Finance, American Finance Association, vol. 28(3), pages 675-685, June.
    40. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iosif Pinelis, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," Papers 1310.6025, arXiv.org.
    2. Pinelis, Iosif, 2013. "An optimal three-way stable and monotonic spectrum of bounds on quantiles: a spectrum of coherent measures of financial risk and economic inequality," MPRA Paper 51361, University Library of Munich, Germany.
    3. repec:kap:theord:v:84:y:2018:i:1:d:10.1007_s11238-017-9629-5 is not listed on IDEAS
    4. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igi:igierp:498. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.igier.unibocconi.it/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.