IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v271y2018i2p644-663.html
   My bibliography  Save this article

Behavioral mean-variance portfolio selection

Author

Listed:
  • Bi, Junna
  • Jin, Hanqing
  • Meng, Qingbin

Abstract

In this paper, a behavioral mean-variance portfolio selection problem in continuous time is formulated and studied. Unlike in the standard mean-variance portfolio selection problem, the cumulative distribution function of the cash flow is distorted by the probability distortion function used in the behavioral mean-variance portfolio selection problem. With the presence of distortion functions, the convexity of the optimization problem is ruined, and the problem is no longer a conventional linear-quadratic (LQ) problem, and we cannot apply conventional optimization tools like convex optimization and dynamic programming. To address this challenge, we propose and demonstrate a solution scheme by taking the quantile function of the terminal cash flow as the decision variable, and then replace the corresponding optimal terminal cash flow with the optimal quantile function. This allows the efficient frontier and the efficient strategy to be exploited.

Suggested Citation

  • Bi, Junna & Jin, Hanqing & Meng, Qingbin, 2018. "Behavioral mean-variance portfolio selection," European Journal of Operational Research, Elsevier, vol. 271(2), pages 644-663.
  • Handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:644-663
    DOI: 10.1016/j.ejor.2018.05.065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718304843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.05.065?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mehra, Rajnish & Prescott, Edward C., 1985. "The equity premium: A puzzle," Journal of Monetary Economics, Elsevier, vol. 15(2), pages 145-161, March.
    2. Dang, D.M. & Forsyth, P.A., 2016. "Better than pre-commitment mean-variance portfolio allocation strategies: A semi-self-financing Hamilton–Jacobi–Bellman equation approach," European Journal of Operational Research, Elsevier, vol. 250(3), pages 827-841.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    5. Cui, Xiangyu & Gao, Jianjun & Li, Xun & Li, Duan, 2014. "Optimal multi-period mean–variance policy under no-shorting constraint," European Journal of Operational Research, Elsevier, vol. 234(2), pages 459-468.
    6. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71, January.
    7. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    8. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Haim Levy, 2004. "Prospect Theory and Mean-Variance Analysis," Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1015-1041.
    11. Yao, Haixiang & Li, Zhongfei & Li, Duan, 2016. "Multi-period mean-variance portfolio selection with stochastic interest rate and uncontrollable liability," European Journal of Operational Research, Elsevier, vol. 252(3), pages 837-851.
    12. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    13. Ray, Pritee & Jenamani, Mamata, 2016. "Mean-variance analysis of sourcing decision under disruption risk," European Journal of Operational Research, Elsevier, vol. 250(2), pages 679-689.
    14. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    15. Brocklesby, John, 2016. "The what, the why and the how of behavioural operational research—An invitation to potential sceptics," European Journal of Operational Research, Elsevier, vol. 249(3), pages 796-805.
    16. Francisco J. Gomes, 2005. "Portfolio Choice and Trading Volume with Loss-Averse Investors," The Journal of Business, University of Chicago Press, vol. 78(2), pages 675-706, March.
    17. Xue Dong He & Sang Hu & Jan Obłój & Xun Yu Zhou, 2017. "Technical Note—Path-Dependent and Randomized Strategies in Barberis’ Casino Gambling Model," Operations Research, INFORMS, vol. 65(1), pages 97-103, February.
    18. Milton Friedman & L. J. Savage, 1948. "The Utility Analysis of Choices Involving Risk," Journal of Political Economy, University of Chicago Press, vol. 56, pages 279-279.
    19. Merton, Robert C., 1972. "An Analytic Derivation of the Efficient Portfolio Frontier," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 7(4), pages 1851-1872, September.
    20. Lioui, Abraham & Poncet, Patrice, 2016. "Understanding dynamic mean variance asset allocation," European Journal of Operational Research, Elsevier, vol. 254(1), pages 320-337.
    21. Tomasz R. Bielecki & Hanqing Jin & Stanley R. Pliska & Xun Yu Zhou, 2005. "Continuous‐Time Mean‐Variance Portfolio Selection With Bankruptcy Prohibition," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 213-244, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junna Bi & Jun Cai & Yan Zeng, 2021. "Equilibrium reinsurance-investment strategies with partial information and common shock dependence," Annals of Operations Research, Springer, vol. 307(1), pages 1-24, December.
    2. Vergara, Marcos & Bonilla, Claudio A., 2021. "Precautionary saving in mean-variance models and different sources of risk," Economic Modelling, Elsevier, vol. 98(C), pages 280-289.
    3. Kirkby, J. Lars & Mitra, Sovan & Nguyen, Duy, 2020. "An analysis of dollar cost averaging and market timing investment strategies," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1168-1186.
    4. Harris, Richard D. F. & Mazibas, Murat, 2022. "Portfolio optimization with behavioural preferences and investor memory," European Journal of Operational Research, Elsevier, vol. 296(1), pages 368-387.
    5. Shuzhen Yang, 2020. "Discrete time multi-period mean-variance model: Bellman type strategy and Empirical analysis," Papers 2011.10966, arXiv.org.
    6. Amen Aissi Harzallah & Mouna Boujelbene Abbes, 2020. "The Impact of Financial Crises on the Asset Allocation: Classical Theory Versus Behavioral Theory," Journal of Interdisciplinary Economics, , vol. 32(2), pages 218-236, July.
    7. Rodríguez, Yeny E. & Gómez, Juan M. & Contreras, Javier, 2021. "Diversified behavioral portfolio as an alternative to Modern Portfolio Theory," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    8. Li, Yan & Mi, Hui, 2021. "Portfolio optimization under safety first expected utility with nonlinear probability distortion," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    9. De Gennaro Aquino, Luca & Sornette, Didier & Strub, Moris S., 2023. "Portfolio selection with exploration of new investment assets," European Journal of Operational Research, Elsevier, vol. 310(2), pages 773-792.
    10. Ramesh Adhikari & Kyle J. Putnam & Humnath Panta, 2020. "Robust Optimization-Based Commodity Portfolio Performance," IJFS, MDPI, vol. 8(3), pages 1-16, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amen Aissi Harzallah & Mouna Boujelbene Abbes, 2020. "The Impact of Financial Crises on the Asset Allocation: Classical Theory Versus Behavioral Theory," Journal of Interdisciplinary Economics, , vol. 32(2), pages 218-236, July.
    2. Pavlo Blavatskyy, 2018. "A second-generation disappointment aversion theory of decision making under risk," Theory and Decision, Springer, vol. 84(1), pages 29-60, January.
    3. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    4. Valeri Zakamouline & Steen Koekebakker, 2009. "A Generalisation of the Mean†Variance Analysis," European Financial Management, European Financial Management Association, vol. 15(5), pages 934-970, November.
    5. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.
    6. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    7. Levy, Haim & Levy, Moshe, 2002. "Experimental test of the prospect theory value function: A stochastic dominance approach," Organizational Behavior and Human Decision Processes, Elsevier, vol. 89(2), pages 1058-1081, November.
    8. Zuo Quan Xu, 2018. "Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework," Papers 1803.02546, arXiv.org, revised Aug 2021.
    9. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    10. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    11. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    12. Wakker, Peter P. & Zank, Horst, 2002. "A simple preference foundation of cumulative prospect theory with power utility," European Economic Review, Elsevier, vol. 46(7), pages 1253-1271, July.
    13. Haim Levy & Enrico G. De Giorgi & Thorsten Hens, 2012. "Two Paradigms and Nobel Prizes in Economics: a Contradiction or Coexistence?," European Financial Management, European Financial Management Association, vol. 18(2), pages 163-182, March.
    14. Haim Levy, 2010. "The CAPM is Alive and Well: A Review and Synthesis," European Financial Management, European Financial Management Association, vol. 16(1), pages 43-71, January.
    15. Alain Bensoussan & Abel Cadenillas & Hyeng Keun Koo, 2015. "Entrepreneurial Decisions on Effort and Project with a Nonconcave Objective Function," Mathematics of Operations Research, INFORMS, vol. 40(4), pages 902-914, October.
    16. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).
    17. Pavlo R. Blavatskyy, 2016. "Risk preferences of Australian academics: where retirement funds are invested tells the story," Theory and Decision, Springer, vol. 80(3), pages 411-426, March.
    18. Lean, Hooi Hooi & McAleer, Michael & Wong, Wing-Keung, 2015. "Preferences of risk-averse and risk-seeking investors for oil spot and futures before, during and after the Global Financial Crisis," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 204-216.
    19. Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
    20. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:271:y:2018:i:2:p:644-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.