IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v251y2016i2p541-553.html
   My bibliography  Save this article

Portfolio optimization with disutility-based risk measure

Author

Listed:
  • Fulga, Cristinca

Abstract

In this paper we propose a quantile-based risk measure which is defined using the modified loss distribution according to the decision maker’s risk and loss aversion. The properties related to different classes of disutility functions are established. A portfolio selection model in the Mean-Risk framework is proposed and equivalent formulations of the model generating the same efficient frontier are given. The advantages of this approach are investigated using real world data from NYSE. The differences between the efficient frontier of the proposed model and the classical Mean-Variance and Mean-CVaR are quantified and interpreted. Extensive experiments show that the efficient portfolios obtained by using the proposed model exhibit lower risk levels and an increased satisfaction compared to the other two Mean-Risk models.

Suggested Citation

  • Fulga, Cristinca, 2016. "Portfolio optimization with disutility-based risk measure," European Journal of Operational Research, Elsevier, vol. 251(2), pages 541-553.
  • Handle: RePEc:eee:ejores:v:251:y:2016:i:2:p:541-553
    DOI: 10.1016/j.ejor.2015.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715010255
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fortin, Ines & Hlouskova, Jaroslava, 2011. "Optimal asset allocation under linear loss aversion," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2974-2990, November.
    2. Ron Dembo & Dan Rosen, 1999. "The practice of portfolio replication. A practical overview of forward and inverse problems," Annals of Operations Research, Springer, vol. 85(0), pages 267-284, January.
    3. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    4. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    5. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    6. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    7. Hallerbach, Winfried & Ning, Haikun & Soppe, Aloy & Spronk, Jaap, 2004. "A framework for managing a portfolio of socially responsible investments," European Journal of Operational Research, Elsevier, vol. 153(2), pages 517-529, March.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Çanakoglu, Ethem & Özekici, Süleyman, 2010. "Portfolio selection in stochastic markets with HARA utility functions," European Journal of Operational Research, Elsevier, vol. 201(2), pages 520-536, March.
    10. Haim Levy, 2004. "Prospect Theory and Mean-Variance Analysis," Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1015-1041.
    11. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    12. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    13. J. Dhaene & R. J. A. Laeven & S. Vanduffel & G. Darkiewicz & M. J. Goovaerts, 2008. "Can a Coherent Risk Measure Be Too Subadditive?," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(2), pages 365-386.
    14. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    15. Bjorn Hagstromer & Jane Binner, 2009. "Stock portfolio selection with full-scale optimization and differential evolution," Applied Financial Economics, Taylor & Francis Journals, vol. 19(19), pages 1559-1571.
    16. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    17. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    18. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    19. Enrico Giorgi & Thorsten Hens, 2006. "Making prospect theory fit for finance," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 20(3), pages 339-360, September.
    20. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    21. Frittelli, Marco & Rosazza Gianin, Emanuela, 2002. "Putting order in risk measures," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1473-1486, July.
    22. Yu, Bosco Wing-Tong & Pang, Wan Kai & Troutt, Marvin D. & Hou, Shui Hung, 2009. "Objective comparisons of the optimal portfolios corresponding to different utility functions," European Journal of Operational Research, Elsevier, vol. 199(2), pages 604-610, December.
    23. Roman, Diana & Mitra, Gautam & Zverovich, Victor, 2013. "Enhanced indexation based on second-order stochastic dominance," European Journal of Operational Research, Elsevier, vol. 228(1), pages 273-281.
    24. Ralph Steuer & Yue Qi & Markus Hirschberger, 2007. "Suitable-portfolio investors, nondominated frontier sensitivity, and the effect of multiple objectives on standard portfolio selection," Annals of Operations Research, Springer, vol. 152(1), pages 297-317, July.
    25. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    26. Spronk, Jaap & Hallerbach, Winfried, 1997. "Financial modelling: Where to go? With an illustration for portfolio management," European Journal of Operational Research, Elsevier, vol. 99(1), pages 113-125, May.
    27. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. " Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    28. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    29. Adam Krzemienowski, 2009. "Risk preference modeling with conditional average: an application to portfolio optimization," Annals of Operations Research, Springer, vol. 165(1), pages 67-95, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:cys:ecocyb:v:50:y:2017:i:3:p:127-142 is not listed on IDEAS
    2. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:251:y:2016:i:2:p:541-553. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/eor .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.