IDEAS home Printed from https://ideas.repec.org/p/boe/boeewp/0596.html
   My bibliography  Save this paper

The dynamic Black-Litterman approach to asset allocation

Author

Listed:
  • Harris, Richard D F

    (Xfi Centre for Finance and Investment, University of Exeter)

  • Stoja, Evarist

    (School of Economics, Finance and Management, University of Bristol)

  • Tan, Linzhi

    (Division of Accounting and Finance, Nottingham Business School, Nottingham Trent University.)

Abstract

We generalise the Black-Litterman (BL) portfolio management framework to incorporate time-variation in the conditional distribution of returns in the asset allocation process. We evaluate the performance of the dynamic BL model using both standard performance ratios as well as other measures that are designed to capture tail risk in the presence of non-normally distributed asset returns. We find that dynamic BL model outperforms a range of different benchmarks. Moreover, we show that the choice of volatility model has a considerable impact on the performance of the dynamic BL model.

Suggested Citation

  • Harris, Richard D F & Stoja, Evarist & Tan, Linzhi, 2016. "The dynamic Black-Litterman approach to asset allocation," Bank of England working papers 596, Bank of England.
  • Handle: RePEc:boe:boeewp:0596
    as

    Download full text from publisher

    File URL: https://www.bankofengland.co.uk/-/media/boe/files/working-paper/2016/the-dynamic-black-litterman-approach-to-asset-allocation.pdf?la=en&hash=D1C14093534A3159C8B8AA5E5D1DAFC03B449C16
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Dimitris Bertsimas & Vishal Gupta & Ioannis Ch. Paschalidis, 2012. "Inverse Optimization: A New Perspective on the Black-Litterman Model," Operations Research, INFORMS, vol. 60(6), pages 1389-1403, December.
    3. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    4. Jorion, Philippe, 1991. "Bayesian and CAPM estimators of the means: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 15(3), pages 717-727, June.
    5. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    6. Farinelli, Simone & Tibiletti, Luisa, 2008. "Sharpe thinking in asset ranking with one-sided measures," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1542-1547, March.
    7. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
    8. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    9. Best, Michael J & Grauer, Robert R, 1991. "On the Sensitivity of Mean-Variance-Efficient Portfolios to Changes in Asset Means: Some Analytical and Computational Results," Review of Financial Studies, Society for Financial Studies, vol. 4(2), pages 315-342.
    10. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    11. Rachev, Svetlozar & Jasic, Teo & Stoyanov, Stoyan & Fabozzi, Frank J., 2007. "Momentum strategies based on reward-risk stock selection criteria," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2325-2346, August.
    12. Kerstens, Kristiaan & Mounir, Amine & Van de Woestyne, Ignace, 2011. "Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function," European Journal of Operational Research, Elsevier, vol. 210(1), pages 81-94, April.
    13. Giulio Palomba, 2008. "Multivariate GARCH models and the Black-Litterman approach for tracking error constrained portfolios: an empirical analysis," Global Business and Economics Review, Inderscience Enterprises Ltd, vol. 10(4), pages 379-413.
    14. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    15. Barros Fernandes, José Luiz & Haas Ornelas, José Renato & Martínez Cusicanqui, Oscar Augusto, 2012. "Combining equilibrium, resampling, and analyst’s views in portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1354-1361.
    16. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    17. Peiro, Amado, 1999. "Skewness in financial returns," Journal of Banking & Finance, Elsevier, vol. 23(6), pages 847-862, June.
    18. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    19. Chiarawongse, Anant & Kiatsupaibul, Seksan & Tirapat, Sunti & Roy, Benjamin Van, 2012. "Portfolio selection with qualitative input," Journal of Banking & Finance, Elsevier, vol. 36(2), pages 489-496.
    20. Brandt, Michael W. & Wang, Kevin Q., 2003. "Time-varying risk aversion and unexpected inflation," Journal of Monetary Economics, Elsevier, vol. 50(7), pages 1457-1498, October.
    21. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    22. Rosella Giacometti & Marida Bertocchi & Svetlozar T. Rachev & Frank J. Fabozzi, 2007. "Stable distributions in the Black-Litterman approach to asset allocation," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 423-433.
    23. Todd Mitton & Keith Vorkink, 2007. "Equilibrium Underdiversification and the Preference for Skewness," Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1255-1288.
    24. Stinstra, Erwin & den Hertog, Dick, 2008. "Robust optimization using computer experiments," European Journal of Operational Research, Elsevier, vol. 191(3), pages 816-837, December.
    25. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    26. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    27. Scott, Robert C & Horvath, Philip A, 1980. "On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    28. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2009. "Optimal asset allocation aid system: From "one-size" vs "tailor-made" performance ratio," European Journal of Operational Research, Elsevier, vol. 192(1), pages 209-215, January.
    29. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    30. Kalotychou, Elena & Staikouras, Sotiris K. & Zhao, Gang, 2014. "The role of correlation dynamics in sector allocation," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 1-12.
    31. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    32. Steven Beach & Alexei Orlov, 2007. "An application of the Black–Litterman model with EGARCH-M-derived views for international portfolio management," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 21(2), pages 147-166, June.
    33. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    34. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    35. Grauer, Robert R. & Shen, Frederick C., 2000. "Do constraints improve portfolio performance?," Journal of Banking & Finance, Elsevier, vol. 24(8), pages 1253-1274, August.
    36. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palczewski, Andrzej & Palczewski, Jan, 2019. "Black–Litterman model for continuous distributions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 708-720.
    2. Platanakis, Emmanouil & Sutcliffe, Charles & Ye, Xiaoxia, 2021. "Horses for courses: Mean-variance for asset allocation and 1/N for stock selection," European Journal of Operational Research, Elsevier, vol. 288(1), pages 302-317.
    3. Fernandes, Betina & Street, Alexandre & Fernandes, Cristiano & Valladão, Davi, 2018. "On an adaptive Black–Litterman investment strategy using conditional fundamentalist information: A Brazilian case study," Finance Research Letters, Elsevier, vol. 27(C), pages 201-207.
    4. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    2. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    3. Carroll, Rachael & Conlon, Thomas & Cotter, John & Salvador, Enrique, 2017. "Asset allocation with correlation: A composite trade-off," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1164-1180.
    4. Zhu, Bo & Zhang, Tianlun, 2021. "Long-term wealth growth portfolio allocation under parameter uncertainty: A non-conservative robust approach," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    5. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    6. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.
    7. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    8. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    9. Harris, Richard D.F. & Mazibas, Murat, 2013. "Dynamic hedge fund portfolio construction: A semi-parametric approach," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 139-149.
    10. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    11. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2020. "Does sophistication of the weighting scheme enhance the performance of long-short commodity portfolios?," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 164-180.
    12. Víctor Adame-García & Fernando Fernández-Rodríguez & Simón Sosvilla-Rivero, 2017. "“Resolution of optimization problems and construction of efficient portfolios: An application to the Euro Stoxx 50 index"," IREA Working Papers 201702, University of Barcelona, Research Institute of Applied Economics, revised Feb 2017.
    13. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    14. Adabi Firouzjaee , Bagher & Mehrara , Mohsen & Mohammadi , Shapour, 2014. "Optimal Portfolio Selection for Tehran Stock Exchange Using Conditional, Partitioned and Worst-case Value at Risk Measures," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 9(1), pages 1-30, October.
    15. Le, Trung H., 2021. "International portfolio allocation: The role of conditional higher moments," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 33-57.
    16. Low, Rand Kwong Yew & Alcock, Jamie & Faff, Robert & Brailsford, Timothy, 2013. "Canonical vine copulas in the context of modern portfolio management: Are they worth it?," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3085-3099.
    17. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    18. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    19. Santos, André Alves Portela & Ferreira, Alexandre R., 2017. "On the choice of covariance specifications for portfolio selection problems," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 37(1), May.
    20. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    21. Hsu, Po-Hsuan & Han, Qiheng & Wu, Wensheng & Cao, Zhiguang, 2018. "Asset allocation strategies, data snooping, and the 1 / N rule," Journal of Banking & Finance, Elsevier, vol. 97(C), pages 257-269.

    More about this item

    Keywords

    Black-Litterman model; multivariate conditional volatility; portfolio optimization; non-normality; tail risk;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boe:boeewp:0596. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Media Team (email available below). General contact details of provider: https://edirc.repec.org/data/boegvuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.