IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v32y2008i10p2057-2063.html
   My bibliography  Save this article

Beyond Sharpe ratio: Optimal asset allocation using different performance ratios

Author

Listed:
  • Farinelli, Simone
  • Ferreira, Manuel
  • Rossello, Damiano
  • Thoeny, Markus
  • Tibiletti, Luisa

Abstract

As the assumption of normality in return distributions is relaxed, classic Sharpe ratio and its descendants become questionable tools for constructing optimal portfolios. In order to overcome the problem, asymmetrical parameter-dependent performance ratios have been recently proposed in the literature. The aim of this note is to develop an integrated decision aid system for asset allocation based on a toolkit of eleven performance ratios. A multi-period portfolio optimization up covering a fixed horizon is set up: at first, bootstrapping of asset return distributions is assessed to recover all ratios calculations; at second, optimal rebalanced-weights are achieved; at third, optimal final wealth is simulated for each ratios. Eventually, we make a robustness test on the best performance ratios. Empirical simulations confirm the weakness in forecasting of Sharpe ratio, whereas asymmetrical parameter-dependent ratios, such as the Generalized Rachev, Sortino-Satchell and Farinelli-Tibiletti ratios show satisfactorily robustness.

Suggested Citation

  • Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2008. "Beyond Sharpe ratio: Optimal asset allocation using different performance ratios," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2057-2063, October.
  • Handle: RePEc:eee:jbfina:v:32:y:2008:i:10:p:2057-2063
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(07)00429-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shalit, Haim & Yitzhaki, Shlomo, 1984. "Mean-Gini, Portfolio Theory, and the Pricing of Risky Assets," Journal of Finance, American Finance Association, vol. 39(5), pages 1449-1468, December.
    2. Farinelli, Simone & Tibiletti, Luisa, 2008. "Sharpe thinking in asset ranking with one-sided measures," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1542-1547, March.
    3. Kahneman, Daniel & Tversky, Amos, 1979. "Prospect Theory: An Analysis of Decision under Risk," Econometrica, Econometric Society, vol. 47(2), pages 263-291, March.
    4. Hiroshi Konno & Hiroaki Yamazaki, 1991. "Mean-Absolute Deviation Portfolio Optimization Model and Its Applications to Tokyo Stock Market," Management Science, INFORMS, vol. 37(5), pages 519-531, May.
    5. Anders Ekholm & Daniel Pasternack, 2005. "The negative news threshold—An explanation for negative skewness in stock returns," The European Journal of Finance, Taylor & Francis Journals, vol. 11(6), pages 511-529.
    6. Martin R. Young, 1998. "A Minimax Portfolio Selection Rule with Linear Programming Solution," Management Science, INFORMS, vol. 44(5), pages 673-683, May.
    7. Farinelli, Simone & Ferreira, Manuel & Rossello, Damiano & Thoeny, Markus & Tibiletti, Luisa, 2009. "Optimal asset allocation aid system: From "one-size" vs "tailor-made" performance ratio," European Journal of Operational Research, Elsevier, vol. 192(1), pages 209-215, January.
    8. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. León, Angel & Navarro, Lluís & Nieto, Belén, 2019. "Screening rules and portfolio performance," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 642-662.
    2. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    3. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    4. Gotoh, Jun-ya & Takeda, Akiko, 2012. "Minimizing loss probability bounds for portfolio selection," European Journal of Operational Research, Elsevier, vol. 217(2), pages 371-380.
    5. Billio, Monica & Caporin, Massimiliano & Costola, Michele, 2015. "Backward/forward optimal combination of performance measures for equity screening," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 63-83.
    6. Kresta Aleš & Wang Anlan, 2020. "Portfolio Optimization Efficiency Test Considering Data Snooping Bias," Business Systems Research, Sciendo, vol. 11(2), pages 73-85, October.
    7. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    8. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    9. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    10. Daniel Espinoza & Eduardo Moreno, 2014. "A primal-dual aggregation algorithm for minimizing conditional value-at-risk in linear programs," Computational Optimization and Applications, Springer, vol. 59(3), pages 617-638, December.
    11. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
    12. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    13. Wlodzimierz Ogryczak & Michał Przyłuski & Tomasz Śliwiński, 2017. "Efficient optimization of the reward-risk ratio with polyhedral risk measures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 86(3), pages 625-653, December.
    14. Amita Sharma & Sebastian Utz & Aparna Mehra, 2017. "Omega-CVaR portfolio optimization and its worst case analysis," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 505-539, March.
    15. Sergio Ortobelli & Noureddine Kouaissah & Tomáš Tichý, 2017. "On the impact of conditional expectation estimators in portfolio theory," Computational Management Science, Springer, vol. 14(4), pages 535-557, October.
    16. Polak, George G. & Rogers, David F. & Sweeney, Dennis J., 2010. "Risk management strategies via minimax portfolio optimization," European Journal of Operational Research, Elsevier, vol. 207(1), pages 409-419, November.
    17. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    18. Vanita Garg & Kusum Deep, 2019. "Portfolio optimization using Laplacian biogeography based optimization," OPSEARCH, Springer;Operational Research Society of India, vol. 56(4), pages 1117-1141, December.
    19. Brian Tomlin & Yimin Wang, 2005. "On the Value of Mix Flexibility and Dual Sourcing in Unreliable Newsvendor Networks," Manufacturing & Service Operations Management, INFORMS, vol. 7(1), pages 37-57, June.
    20. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:32:y:2008:i:10:p:2057-2063. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.