IDEAS home Printed from
   My bibliography  Save this article

Robust optimization using computer experiments


  • Stinstra, Erwin
  • den Hertog, Dick


During metamodel-based optimization three types of implicit errors are typically made. The first error is the simulation-model error, which is defined by the difference between reality and the computer model. The second error is the metamodel error, which is defined by the difference between the computer model and the metamodel. The third is the implementation error. This paper presents new ideas on how to cope with these errors during optimization, in such a way that the final solution is robust with respect to these errors. We apply the robust counterpart theory of Ben-Tal and Nemirovsky to the most frequently used metamodels: linear regression and Kriging models. The methods proposed are applied to the design of two parts of the TV tube. The simulation-model errors receive little attention in the literature, while in practice these errors may have a significant impact due to propagation of such errors.

Suggested Citation

  • Stinstra, Erwin & den Hertog, Dick, 2008. "Robust optimization using computer experiments," European Journal of Operational Research, Elsevier, vol. 191(3), pages 816-837, December.
  • Handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:816-837

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. den Hertog, Dick & Stehouwer, Peter, 2002. "Optimizing color picture tubes by high-cost nonlinear programming," European Journal of Operational Research, Elsevier, vol. 140(2), pages 197-211, July.
    2. repec:pal:jorsoc:v:57:y:2006:i:4:d:10.1057_palgrave.jors.2601997 is not listed on IDEAS
    3. Sturm, J.F., 2002. "Implementation of Interior Point Methods for Mixed Semidefinite and Second Order Cone Optimization Problems," Discussion Paper 2002-73, Tilburg University, Center for Economic Research.
    4. D den Hertog & J P C Kleijnen & A Y D Siem, 2006. "The correct Kriging variance estimated by bootstrapping," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 400-409, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
    2. Harris, Richard D.F. & Stoja, Evarist & Tan, Linzhi, 2017. "The dynamic Black–Litterman approach to asset allocation," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1085-1096.
    3. Siem, A.Y.D., 2008. "Property preservation and quality measures in meta-models," Other publications TiSEM 259d3ed2-1a23-48fe-8af8-2, Tilburg University, School of Economics and Management.
    4. Siem, A.Y.D. & den Hertog, D., 2007. "Kriging Models That Are Robust With Respect to Simulation Errors," Discussion Paper 2007-68, Tilburg University, Center for Economic Research.
    5. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Discussion Paper 2011-060, Tilburg University, Center for Economic Research.
    6. Gabriella Dellino & Jack P. C. Kleijnen & Carlo Meloni, 2012. "Robust Optimization in Simulation: Taguchi and Krige Combined," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 471-484, August.
    7. He, Zhen & Zhu, Peng-Fei & Park, Sung-Hyun, 2012. "A robust desirability function method for multi-response surface optimization considering model uncertainty," European Journal of Operational Research, Elsevier, vol. 221(1), pages 241-247.
    8. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.

    More about this item

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:191:y:2008:i:3:p:816-837. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.