IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/7f0703e8-06bc-45b4-886c-359aa115101c.html
   My bibliography  Save this paper

Nested maximin Latin hypercube designs

Author

Listed:
  • Rennen, G.

    (Tilburg University, School of Economics and Management)

  • Husslage, B.G.M.

    (Tilburg University, School of Economics and Management)

  • van Dam, E.R.

    (Tilburg University, School of Economics and Management)

  • den Hertog, D.

    (Tilburg University, School of Economics and Management)

Abstract

No abstract is available for this item.

Suggested Citation

  • Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2010. "Nested maximin Latin hypercube designs," Other publications TiSEM 7f0703e8-06bc-45b4-886c-3, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:7f0703e8-06bc-45b4-886c-359aa115101c
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/1171117/38_nested.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D. & Stehouwer, H.P. & Stinstra, E., 2003. "Collaborative metamodelling : Coordinating simulation-based product design," Other publications TiSEM 0196e58f-78a8-4653-a48b-8, Tilburg University, School of Economics and Management.
    2. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
    3. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    4. den Hertog, Dick & Stehouwer, Peter, 2002. "Optimizing color picture tubes by high-cost nonlinear programming," European Journal of Operational Research, Elsevier, vol. 140(2), pages 197-211, July.
    5. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    6. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, January.
    7. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Discussion Paper 2005-79, Tilburg University, Center for Economic Research.
    8. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    9. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
    10. van Dam, E.R. & Husslage, B.G.M. & den Hertog, D. & Melissen, H., 2005. "Maximin Latin Hypercube Designs in Two Dimensions," Other publications TiSEM 288828ce-b56b-41d8-9903-1, Tilburg University, School of Economics and Management.
    11. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Other publications TiSEM 3e013144-3e4c-460c-96bc-1, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weiyan Mu & Chengxin Liu & Shifeng Xiong, 2023. "Nested Maximum Entropy Designs for Computer Experiments," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    2. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    3. Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
    4. Hao Chen & Yan Zhang & Xue Yang, 2021. "Uniform projection nested Latin hypercube designs," Statistical Papers, Springer, vol. 62(4), pages 2031-2045, August.
    5. Shields, Michael D. & Teferra, Kirubel & Hapij, Adam & Daddazio, Raymond P., 2015. "Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 310-325.
    6. Razmi, Afshin & Rahbar, Morteza & Bemanian, Mohammadreza, 2022. "PCA-ANN integrated NSGA-III framework for dormitory building design optimization: Energy efficiency, daylight, and thermal comfort," Applied Energy, Elsevier, vol. 305(C).
    7. Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
    8. Ray-Bing Chen & Ying-Chao Hung & Weichung Wang & Sung-Wei Yen, 2013. "Contour estimation via two fidelity computer simulators under limited resources," Computational Statistics, Springer, vol. 28(4), pages 1813-1834, August.
    9. van Dam, E.R., 2008. "Two-dimensional maximin Latin hypercube designs," Other publications TiSEM 61788dd1-b1b5-4c81-9151-8, Tilburg University, School of Economics and Management.
    10. Chen, Ray-Bing & Hsu, Yen-Wen & Hung, Ying & Wang, Weichung, 2014. "Discrete particle swarm optimization for constructing uniform design on irregular regions," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 282-297.
    11. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2011. "Space-filling Latin hypercube designs for computer experiments," Other publications TiSEM 694f73df-a373-46a7-aa4d-1, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Other publications TiSEM 1c504ec0-f357-42d2-9c92-9, Tilburg University, School of Economics and Management.
    2. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    3. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    4. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Other publications TiSEM 3e013144-3e4c-460c-96bc-1, Tilburg University, School of Economics and Management.
    5. Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2005. "Nested Maximin Latin Hypercube Designs in Two Dimensions," Discussion Paper 2005-79, Tilburg University, Center for Economic Research.
    6. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    7. Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
    8. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
    9. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    10. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Other publications TiSEM 1b5d18c7-b66f-4a9f-838c-b, Tilburg University, School of Economics and Management.
    11. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    12. HARCSA Imre Milán & KOVÁCS Sándor & NÁBRÁDI András, 2020. "Economic Analysis Of Subcontract Distilleries By Simulation Modeling Method," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 50-63, July.
    13. Xiangjing Lai & Jin-Kao Hao & Renbin Xiao & Fred Glover, 2023. "Perturbation-Based Thresholding Search for Packing Equal Circles and Spheres," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 725-746, July.
    14. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
    15. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
    16. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Other publications TiSEM 9dfe6396-1933-45c0-b4e3-5, Tilburg University, School of Economics and Management.
    17. Vieira Jr., Hélcio & Sanchez, Susan & Kienitz, Karl Heinz & Belderrain, Mischel Carmen Neyra, 2011. "Generating and improving orthogonal designs by using mixed integer programming," European Journal of Operational Research, Elsevier, vol. 215(3), pages 629-638, December.
    18. Jing Zhang & Jin Xu & Kai Jia & Yimin Yin & Zhengming Wang, 2019. "Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    19. János Pintér & Zoltán Horváth, 2013. "Integrated experimental design and nonlinear optimization to handle computationally expensive models under resource constraints," Journal of Global Optimization, Springer, vol. 57(1), pages 191-215, September.
    20. Mu, Weiyan & Xiong, Shifeng, 2018. "A class of space-filling designs and their projection properties," Statistics & Probability Letters, Elsevier, vol. 141(C), pages 129-134.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:7f0703e8-06bc-45b4-886c-359aa115101c. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.