IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i1p161-178.html
   My bibliography  Save this article

Robust Optimization for Unconstrained Simulation-Based Problems

Author

Listed:
  • Dimitris Bertsimas

    (Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Omid Nohadani

    (Sloan School of Management and Operations Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Kwong Meng Teo

    (Department of Industrial and Systems Engineering, National University of Singapore, 117576, Singapore)

Abstract

In engineering design, an optimized solution often turns out to be suboptimal when errors are encountered. Although the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization method that is suited for unconstrained problems with a nonconvex cost function as well as for problems based on simulations, such as large partial differential equations (PDE) solver, response surface, and Kriging metamodels. Moreover, this technique can be employed for most real-world problems because it operates directly on the response surface and does not assume any specific structure of the problem. We present this algorithm along with the application to an actual engineering problem in electromagnetic multiple scattering of aperiodically arranged dielectrics, relevant to nanophotonic design. The corresponding objective function is highly nonconvex and resides in a 100-dimensional design space. Starting from an “optimized” design, we report a robust solution with a significantly lower worst-case cost, while maintaining optimality. We further generalize this algorithm to address a nonconvex optimization problem under both implementation errors and parameter uncertainties.

Suggested Citation

  • Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Robust Optimization for Unconstrained Simulation-Based Problems," Operations Research, INFORMS, vol. 58(1), pages 161-178, February.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:1:p:161-178
    DOI: 10.1287/opre.1090.0715
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1090.0715
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1090.0715?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Stanislav Žaković & Costas Pantelides & Berc Rustem, 2000. "An Interior Point Algorithm for Computing Saddle Points of Constrained Continuous Minimax," Annals of Operations Research, Springer, vol. 99(1), pages 59-77, December.
    2. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    3. Y. Zhang, 2007. "General Robust-Optimization Formulation for Nonlinear Programming," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 111-124, January.
    4. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    5. Stinstra, Erwin & den Hertog, Dick, 2008. "Robust optimization using computer experiments," European Journal of Operational Research, Elsevier, vol. 191(3), pages 816-837, December.
    6. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Liang & Bao, Ji & Xu, Chengcheng & Tan, Zhen, 2022. "Biobjective robust simulation-based optimization for unconstrained problems," European Journal of Operational Research, Elsevier, vol. 299(1), pages 249-262.
    2. Emilio Carrizosa & Frédéric Messine, 2021. "An interval branch and bound method for global Robust optimization," Journal of Global Optimization, Springer, vol. 80(3), pages 507-522, July.
    3. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    4. J. Lasserre, 2011. "Min-max and robust polynomial optimization," Journal of Global Optimization, Springer, vol. 51(1), pages 1-10, September.
    5. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    6. Chung, Byung Do & Yao, Tao & Friesz, Terry L. & Liu, Hongcheng, 2012. "Dynamic congestion pricing with demand uncertainty: A robust optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1504-1518.
    7. Angelo Ciccazzo & Vittorio Latorre & Giampaolo Liuzzi & Stefano Lucidi & Francesco Rinaldi, 2015. "Derivative-Free Robust Optimization for Circuit Design," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 842-861, March.
    8. Gabriele Eichfelder & Corinna Krüger & Anita Schöbel, 2017. "Decision uncertainty in multiobjective optimization," Journal of Global Optimization, Springer, vol. 69(2), pages 485-510, October.
    9. Ben-Tal, A. & den Hertog, D., 2011. "Immunizing Conic Quadratic Optimization Problems Against Implementation Errors," Other publications TiSEM 9f3fba48-8501-4ec8-9241-5, Tilburg University, School of Economics and Management.
    10. Dimitris Bertsimas & Omid Nohadani & Kwong Meng Teo, 2010. "Nonconvex Robust Optimization for Problems with Constraints," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 44-58, February.
    11. Ying Cui & Ziyu He & Jong-Shi Pang, 2021. "Nonconvex robust programming via value-function optimization," Computational Optimization and Applications, Springer, vol. 78(2), pages 411-450, March.
    12. Gabriella Dellino & Jack P. C. Kleijnen & Carlo Meloni, 2012. "Robust Optimization in Simulation: Taguchi and Krige Combined," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 471-484, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakan Kaya, 2017. "Managing ambiguity in asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 18(3), pages 163-187, May.
    2. Hsien-Chung Wu, 2019. "Numerical Method for Solving the Robust Continuous-Time Linear Programming Problems," Mathematics, MDPI, vol. 7(5), pages 1-50, May.
    3. V.I. Norkin & G.C. Pflug & A. Ruszczynski, 1996. "A Branch and Bound Method for Stochastic Global Optimization," Working Papers wp96065, International Institute for Applied Systems Analysis.
    4. Cooper, W. W. & Hemphill, H. & Huang, Z. & Li, S. & Lelas, V. & Sullivan, D. W., 1997. "Survey of mathematical programming models in air pollution management," European Journal of Operational Research, Elsevier, vol. 96(1), pages 1-35, January.
    5. Jesús Latorre & Santiago Cerisola & Andrés Ramos & Rafael Palacios, 2009. "Analysis of stochastic problem decomposition algorithms in computational grids," Annals of Operations Research, Springer, vol. 166(1), pages 355-373, February.
    6. Julia Higle & Suvrajeet Sen, 2006. "Multistage stochastic convex programs: Duality and its implications," Annals of Operations Research, Springer, vol. 142(1), pages 129-146, February.
    7. Sodhi, ManMohan S. & Tang, Christopher S., 2009. "Modeling supply-chain planning under demand uncertainty using stochastic programming: A survey motivated by asset-liability management," International Journal of Production Economics, Elsevier, vol. 121(2), pages 728-738, October.
    8. Soleimanian, Azam & Salmani Jajaei, Ghasemali, 2013. "Robust nonlinear optimization with conic representable uncertainty set," European Journal of Operational Research, Elsevier, vol. 228(2), pages 337-344.
    9. Panos Parpas & Berç Rustem, 2007. "Computational Assessment of Nested Benders and Augmented Lagrangian Decomposition for Mean-Variance Multistage Stochastic Problems," INFORMS Journal on Computing, INFORMS, vol. 19(2), pages 239-247, May.
    10. Manuel Laguna, 1998. "Applying Robust Optimization to Capacity Expansion of One Location in Telecommunications with Demand Uncertainty," Management Science, INFORMS, vol. 44(11-Part-2), pages 101-110, November.
    11. Jie Sun & Xinwei Liu, 2006. "Scenario Formulation of Stochastic Linear Programs and the Homogeneous Self-Dual Interior-Point Method," INFORMS Journal on Computing, INFORMS, vol. 18(4), pages 444-454, November.
    12. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    13. Siva Sankaran & Tung Bui, 2008. "An organizational model for transitional negotiations: concepts, design and applications," Group Decision and Negotiation, Springer, vol. 17(2), pages 157-173, March.
    14. K. Kiwiel & C.H. Rosa & A. Ruszczynski, 1995. "Decomposition via Alternating Linearization," Working Papers wp95051, International Institute for Applied Systems Analysis.
    15. Lassiter, Kyle & Khademi, Amin & Taaffe, Kevin M., 2015. "A robust optimization approach to volunteer management in humanitarian crises," International Journal of Production Economics, Elsevier, vol. 163(C), pages 97-111.
    16. Yan, Yongze & Hong, Liu & He, Xiaozheng & Ouyang, Min & Peeta, Srinivas & Chen, Xueguang, 2017. "Pre-disaster investment decisions for strengthening the Chinese railway system under earthquakes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 39-59.
    17. Hsien-Chung Wu, 2021. "Robust Solutions for Uncertain Continuous-Time Linear Programming Problems with Time-Dependent Matrices," Mathematics, MDPI, vol. 9(8), pages 1-52, April.
    18. Semih Atakan & Suvrajeet Sen, 2018. "A Progressive Hedging based branch-and-bound algorithm for mixed-integer stochastic programs," Computational Management Science, Springer, vol. 15(3), pages 501-540, October.
    19. Lee, Chungmok, 2022. "A robust optimization approach with probe-able uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 218-239.
    20. Fudong Xie & Ce Wang & Housheng Duan, 2024. "Optimizing Fleet Size in Point-to-Point Shared Demand Responsive Transportation Service: A Network Decomposition Approach," Mathematics, MDPI, vol. 12(19), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:1:p:161-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.