IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v296y2022i1p218-239.html
   My bibliography  Save this article

A robust optimization approach with probe-able uncertainty

Author

Listed:
  • Lee, Chungmok

Abstract

We consider optimization problems whose objective functions have uncertain coefficients. We assumed that, initially, the uncertain data are given as ranges, and probing of the true values of data is possible. The complete probing of all uncertain data will yield the true optimal solution. However, probing all uncertain data is undesirable because each probing may require cost or time depending on the methods of probing. We are interested in finding a solution, which we call Γ-optimal, that is guaranteed to remain the best solution even after additional Γ probings of uncertain data. An iterative algorithm to find the Γ-optimal solution is developed with theoretical probability bounds of the Γ-optimal solution being true optimal. Special algorithms are also developed for the problems on networks. The extensive computational study shows that the proposed approach could find the true optimal solutions at very high percentages, even with small numbers of probings.

Suggested Citation

  • Lee, Chungmok, 2022. "A robust optimization approach with probe-able uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 218-239.
  • Handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:218-239
    DOI: 10.1016/j.ejor.2021.06.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721005956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.06.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    2. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    3. Jia-Zhen Huo & Yan-Ting Hou & Feng Chu & Jun-Kai He, 2019. "A Combined Average-Case and Worst-Case Analysis for an Integrated Hub Location and Revenue Management Problem," Discrete Dynamics in Nature and Society, Hindawi, vol. 2019, pages 1-13, March.
    4. Martin Desrochers & Jacques Desrosiers & Marius Solomon, 1992. "A New Optimization Algorithm for the Vehicle Routing Problem with Time Windows," Operations Research, INFORMS, vol. 40(2), pages 342-354, April.
    5. Yanıkoğlu, İhsan & Gorissen, Bram L. & den Hertog, Dick, 2019. "A survey of adjustable robust optimization," European Journal of Operational Research, Elsevier, vol. 277(3), pages 799-813.
    6. Villeneuve, Daniel & Desaulniers, Guy, 2005. "The shortest path problem with forbidden paths," European Journal of Operational Research, Elsevier, vol. 165(1), pages 97-107, August.
    7. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    8. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    9. John M. Mulvey & Andrzej Ruszczyński, 1995. "A New Scenario Decomposition Method for Large-Scale Stochastic Optimization," Operations Research, INFORMS, vol. 43(3), pages 477-490, June.
    10. Claudia Bode & Stefan Irnich, 2015. "In-Depth Analysis of Pricing Problem Relaxations for the Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 49(2), pages 369-383, May.
    11. F. Guerriero & R. Musmanno, 2001. "Label Correcting Methods to Solve Multicriteria Shortest Path Problems," Journal of Optimization Theory and Applications, Springer, vol. 111(3), pages 589-613, December.
    12. Stefan Irnich & Guy Desaulniers, 2005. "Shortest Path Problems with Resource Constraints," Springer Books, in: Guy Desaulniers & Jacques Desrosiers & Marius M. Solomon (ed.), Column Generation, chapter 0, pages 33-65, Springer.
    13. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    14. Martins, Ernesto Queiros Vieira, 1984. "On a multicriteria shortest path problem," European Journal of Operational Research, Elsevier, vol. 16(2), pages 236-245, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goerigk, Marc & Lendl, Stefan & Wulf, Lasse, 2022. "Two-Stage robust optimization problems with two-stage uncertainty," European Journal of Operational Research, Elsevier, vol. 302(1), pages 62-78.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Hao & Yang, Jun & Yang, Chao, 2019. "A robust optimization approach to multi-interval location-inventory and recharging planning for electric vehicles," Omega, Elsevier, vol. 86(C), pages 59-75.
    2. de Lima, Vinícius L. & Alves, Cláudio & Clautiaux, François & Iori, Manuel & Valério de Carvalho, José M., 2022. "Arc flow formulations based on dynamic programming: Theoretical foundations and applications," European Journal of Operational Research, Elsevier, vol. 296(1), pages 3-21.
    3. Qin, Hu & Moriakin, Anton & Xu, Gangyan & Li, Jiliu, 2024. "The generator distribution problem for base stations during emergency power outage: A branch-and-price-and-cut approach," European Journal of Operational Research, Elsevier, vol. 318(3), pages 752-767.
    4. Albert H. Schrotenboer & Evrim Ursavas & Iris F. A. Vis, 2019. "A Branch-and-Price-and-Cut Algorithm for Resource-Constrained Pickup and Delivery Problems," Transportation Science, INFORMS, vol. 53(4), pages 1001-1022, July.
    5. Guy Desaulniers & Diego Pecin & Claudio Contardo, 2019. "Selective pricing in branch-price-and-cut algorithms for vehicle routing," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(2), pages 147-168, June.
    6. Luciano Costa & Claudio Contardo & Guy Desaulniers, 2019. "Exact Branch-Price-and-Cut Algorithms for Vehicle Routing," Transportation Science, INFORMS, vol. 53(4), pages 946-985, July.
    7. Dikas, G. & Minis, I., 2014. "Scheduled paratransit transport systems," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 18-34.
    8. Shyam S. G. Perumal & Jesper Larsen & Richard M. Lusby & Morten Riis & Tue R. L. Christensen, 2022. "A column generation approach for the driver scheduling problem with staff cars," Public Transport, Springer, vol. 14(3), pages 705-738, October.
    9. Wu, Wei & Hayashi, Takito & Haruyasu, Kato & Tang, Liang, 2023. "Exact algorithms based on a constrained shortest path model for robust serial-batch and parallel-batch scheduling problems," European Journal of Operational Research, Elsevier, vol. 307(1), pages 82-102.
    10. Leonardo Lozano & Daniel Duque & Andrés L. Medaglia, 2016. "An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints," Transportation Science, INFORMS, vol. 50(1), pages 348-357, February.
    11. Ann-Kathrin Rothenbächer, 2019. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Transportation Science, INFORMS, vol. 53(3), pages 850-866, May.
    12. Taccari, Leonardo, 2016. "Integer programming formulations for the elementary shortest path problem," European Journal of Operational Research, Elsevier, vol. 252(1), pages 122-130.
    13. Ahmadi-Javid, Amir & Amiri, Elahe & Meskar, Mahla, 2018. "A Profit-Maximization Location-Routing-Pricing Problem: A Branch-and-Price Algorithm," European Journal of Operational Research, Elsevier, vol. 271(3), pages 866-881.
    14. Ricardo Fukasawa & Qie He & Fernando Santos & Yongjia Song, 2018. "A Joint Vehicle Routing and Speed Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 694-709, November.
    15. Zhao, Yanlu & Alfandari, Laurent, 2020. "Design of diversified package tours for the digital travel industry : A branch-cut-and-price approach," European Journal of Operational Research, Elsevier, vol. 285(3), pages 825-843.
    16. Ghoniem, Ahmed & Farhadi, Farbod & Reihaneh, Mohammad, 2015. "An accelerated branch-and-price algorithm for multiple-runway aircraft sequencing problems," European Journal of Operational Research, Elsevier, vol. 246(1), pages 34-43.
    17. Veaceslav Ghilas & Jean-François Cordeau & Emrah Demir & Tom Van Woensel, 2018. "Branch-and-Price for the Pickup and Delivery Problem with Time Windows and Scheduled Lines," Transportation Science, INFORMS, vol. 52(5), pages 1191-1210, October.
    18. Emilio Zamorano & Annika Becker & Raik Stolletz, 2018. "Task assignment with start time-dependent processing times for personnel at check-in counters," Journal of Scheduling, Springer, vol. 21(1), pages 93-109, February.
    19. Evers, L. & Glorie, K.M. & van der Ster, S. & Barros, A.I. & Monsuur, H., 2012. "The Orienteering Problem under Uncertainty Stochastic Programming and Robust Optimization compared," Econometric Institute Research Papers EI 2012-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Timo Hintsch & Stefan Irnich & Lone Kiilerich, 2021. "Branch-Price-and-Cut for the Soft-Clustered Capacitated Arc-Routing Problem," Transportation Science, INFORMS, vol. 55(3), pages 687-705, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:296:y:2022:i:1:p:218-239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.